Tensorflow objection detection api 物体检测模型 (三) 从识别的物体中抠出特定物体进行保存

本文主要是介绍Tensorflow objection detection api 物体检测模型 (三) 从识别的物体中抠出特定物体进行保存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在利用官方提供的Tensorflow objection detection api 进行物体检测时,会有很多物体被检测出来并且被框柱,而我的目标是只需要一个类别的物体,那么如何将这个特定的物体抠出来保存呢?下面我就介绍一下实现的方法及代码。

比如下面这张图,被识别的物体有person和kite,我们的目标就是只将识别的人保存下来.。

在做这件事之前,先了解几个参数。

预测框中字体大小的调节:

在\models\research\object_detection\utils\visualization_utils.py脚本中的第174行

预测框线条大小的调节:

第一个参数: boxes:

官方解释:boxes: [N, max_detections, 4] float32 tensor of detection boxes.

boxes是[N, 4]的二维数字数组,[ymin, xmin, ymax, xmax]坐标采用[0,1]之间的标准化格式,如[3.70723009e-02 2.32388377e-02 8.62021029e-01 3.18440855e-01]  对应被检测到物体的矩形信息。由于是[0,1]之间的标准化格式,所以乘以图片的width和height就可以得到矩形框的实际大小。

print(boxes.shape())#(1, 100, 4)
print(boxes)#结果如下:
(1, 100, 4)
[[[0.3893192  0.34821513 0.40933684 0.36334053][0.57497    0.06333599 0.6149571  0.07912395][0.67780834 0.07910287 0.83874995 0.12358559][0.08469409 0.4369094  0.17420965 0.4994243 ][0.07829238 0.24870682 0.40474242 0.42367953][0.08469409 0.4369094  0.17420965 0.4994243 ][0.36447126 0.00367826 0.9636777  0.14283133][0.00455514 0.42866302 0.5063168  0.66165733][0.1899012  0.32323682 0.47276065 0.46757388]........................................[0.16059408 0.09260845 0.37784013 0.69468033][0.67780834 0.07910287 0.83874995 0.12358559]]]

在\models\research\object_detection\utils\visualization_utils.py脚本中的第441行、第321行以及第626行的

def visualize_boxes_and_labels_on_image_array( )函数中定义了在图像上绘制的最大框数max_boxes_to_draw=20;可视化的最小得分阈值min_score_thresh=0.2. 这些参数都可以根据需要修改。

这篇关于Tensorflow objection detection api 物体检测模型 (三) 从识别的物体中抠出特定物体进行保存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493313

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}