文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于最优经济运行区域的主动配电网日前-日内协同调度方法》

本文主要是介绍文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于最优经济运行区域的主动配电网日前-日内协同调度方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个标题涉及到主动配电网的日前-日内协同调度方法,其关键要素包括“最优经济运行区域”和“日前-日内协同调度”。

  1. 主动配电网: 这指的是一种能够主动响应和参与调度的配电网系统。传统的配电网通常是被动的,即电力从电源到终端用户的传输是由系统运营商掌控的。而主动配电网能够更灵活地管理分布式能源资源、储能系统和负荷。

  2. 日前-日内协同调度: 这表示调度方法考虑了两个不同的时间尺度,即日前和日内。日前调度通常指的是对未来24小时内的电力需求和供给进行规划,而日内调度则是在实际运行过程中对电力系统进行更短时间内的调整。协同调度强调这两个时间尺度之间的协同优化,以确保整体系统的高效性和可靠性。

  3. 基于最优经济运行区域: 这可能指的是在调度过程中,系统考虑了经济运行区域的最优化。经济运行区域可能是指在电力系统中,能够以最经济的方式满足电力需求的一定范围或状态。通过考虑这一区域内的最优化问题,可以在经济效益和系统运行的可靠性之间找到平衡。

因此,这个标题的主题是关于如何在主动配电网中,通过考虑最优经济运行区域,制定一种协同调度方法,以在日前和日内两个时间尺度上实现电力系统的高效和可靠运行。这可能涉及到复杂的优化算法、能源管理策略以及对分布式能源资源的灵活调度。

摘要:传统的日前-日内协同调度通常以与日前时序计划曲线偏差最小作为日内目标函数,当日内新能源出力预测值与日前相差较大时,储能装置(ESS)等由于其时间耦合约束日内调整范围有限,导致经济性和灵活性较差。对此,本文提出了基于最优经济运行区域(OEOR)的主动配电网(ADN)日前-日内协同调度方法。在日前阶段,构建线性化ADN调度模型,基于拉丁超立方采样法生成的大量随机场景下调控设备优化曲线,以全时间段内设备出力上下界内所包含的随机场景优化结果数量最大为目标,考虑储能装置荷电状态的相邻时段约束和微型燃气轮机的爬/滑坡率,构建OEOR生成模型。最后,在日内阶段,调控设备在OEOR内滚动优化调整,当该时段优化值贴近OEOR边界时,考虑相邻时段出力约束,将OEOR扩展为最优经济极限运行区域(E-OEOR)。算例结果表明,所提方法相比于传统方法能够更有效地提升配电网经济性。

这段摘要描述了一种基于最优经济运行区域(OEOR)的主动配电网(ADN)日前-日内协同调度方法,旨在解决传统调度中由于新能源出力预测误差导致的经济性和灵活性较差的问题。

具体解读如下:

  1. 问题陈述: 传统的日前-日内协同调度通常以最小化日内时序计划曲线与实际发电情况的偏差作为目标函数。然而,当日内新能源出力预测值与日前计划相差较大时,一些设备(如储能装置)由于时间耦合的约束,其日内调整范围有限,从而影响了系统的经济性和灵活性。

  2. 提出方法: 为解决上述问题,该文提出了一种基于OEOR的ADN日前-日内协同调度方法。在日前阶段,作者构建了线性化的ADN调度模型,并利用拉丁超立方采样法生成大量随机场景下的调控设备优化曲线。目标是在全时间段内设备出力上下界内包含尽可能多的随机场景,考虑储能装置荷电状态的相邻时段约束和微型燃气轮机的爬/滑坡率,构建OEOR生成模型。

  3. 日内调整: 在日内阶段,调控设备在OEOR内进行滚动优化调整。当该时段的优化值接近OEOR边界时,考虑相邻时段的出力约束,将OEOR扩展为最优经济极限运行区域(E-OEOR)。

  4. 结果验证: 算例结果表明,该方法相较于传统方法更有效地提升了配电网的经济性。这可能意味着通过考虑更多的随机场景和设备调整的灵活性,系统在应对日前计划与实际情况偏差时表现更为优越。

总体而言,该方法旨在提高配电网在日前-日内调度过程中的经济性和灵活性,从而更好地适应新能源等因素的不确定性。

关键词:最优经济运行区域;时间耦合性约束;协同调度;主动配电网;
 

  1. 最优经济运行区域(OEOR): 这指的是系统中一种经济性最优的运行状态或区域。在这个上下文中,可能是指在配电网中,通过考虑各种因素(如成本、效率等),确定系统在某个特定时间段内的最优运行状态或运行区域。

  2. 时间耦合性约束: 这表示系统中各个组件或设备在时间上相互关联或相互依赖的约束。在电力系统中,这可能涉及到不同设备在时间上的操作和调整需要考虑彼此的关系,尤其是在日前-日内协同调度中。

  3. 协同调度: 这指的是系统中不同部分之间协同工作以实现某个共同目标的调度过程。在电力系统中,日前-日内协同调度可能涉及到日前计划和日内实际运行之间的协同工作,以确保系统的稳定运行和经济性。

  4. 主动配电网(ADN): 这表示一种具有主动调度和控制能力的配电网。主动配电网通常能够灵活应对不同的运行条件和需求,可能涉及到智能化的设备和系统,以实现更高效、可靠和可持续的电力分配。

这些关键词在文中一起被使用,指向一种新的配电网调度方法,其中通过考虑经济性最优(OEOR)、时间耦合性约束、协同调度以及主动配电网的特性,来优化日前-日内的电力系统运行。这种方法的目标可能是提高系统的经济性和灵活性,尤其在面对新能源等不确定因素时。

仿真算例:

本文选取 IEEE33 节点配电网进行算例分析, 节点负荷和支路阻抗参数见文献[23],网架结构见 附录 D 图 D1。调控设备相关参数见附录 D [4][24]。 配电网功率基准值为 10MVA,电压基准值为 12.66kV,节点电压幅值范围为 0.93p.u.~1.07p.u.。 日前PV的预测值服从标准差为10%的平均值的正 态分布,其中平均值为日前预测出力值。采用 LHS 在±3 个标准差范围内随机生成 PV 出力场景。网 络综合运行费用权重 μOP 和网络损耗权重 μL 分别 设置为 0.7 和 0.3。负荷出力和日前-日内的 PV 预 测出力如附录 D 图 D2 所示。

仿真程序复现思路:

仿真复现思路涉及以下步骤:

  1. 数据收集与准备:

    • 获取 IEEE33 节点配电网的节点负载和支路阻抗参数,网架结构信息。
    • 收集调控设备相关参数和其他附录中所需的数据,如功率基准值、电压基准值、节点电压幅值范围等。
  2. PV出力场景生成:

    • 根据描述中提供的信息,使用正态分布模型生成日前PV的预测值。采用平均值作为日前预测出力,标准差为平均值的10%。
    • 使用 Latin Hypercube Sampling (LHS) 方法,在±3个标准差范围内生成符合正态分布的随机数作为PV出力场景。
  3. 仿真模型构建与配置:

    • 利用收集到的数据构建 IEEE33 节点配电网的仿真模型。
    • 设置负荷出力和日前-日内的 PV 预测出力,将其作为仿真模型的输入。
    • 设定网络综合运行费用权重 μOP 和网络损耗权重 μL 为 0.7 和 0.3。
  4. 仿真运行及结果分析:

    • 将生成的PV出力场景和负荷出力应用于仿真模型,进行日前-日内的电力系统仿真运行。
    • 计算系统综合运行费用,并考虑网络损耗权重进行综合分析。
    • 分析节点电压幅值范围是否在合理范围内,并评估系统的稳定性和经济性。

以下是一个简化的伪代码示例,展示了如何生成PV出力场景,并进行简单的仿真模拟。这里使用 Python 语言作为示例:

import numpy as np# 步骤1: 数据准备
# 收集 IEEE33 节点配电网的节点负载和支路阻抗参数
# ...# 收集调控设备相关参数和其他附录中的数据
# ...# 定义功率基准值和电压基准值
base_power = 10  # 10 MVA
base_voltage = 12.66  # 12.66 kV# 定义节点电压幅值范围
voltage_range = (0.93, 1.07)  # 0.93p.u. ~ 1.07p.u.# 步骤2: PV出力场景生成
# 生成日前PV预测出力值的平均值和标准差
average_forecast_output = 100  # 假设的平均值
std_deviation = 0.1 * average_forecast_output  # 标准差为平均值的10%# 生成PV出力场景
num_scenarios = 100  # 生成场景的数量
pv_output_scenarios = np.random.normal(average_forecast_output, std_deviation, num_scenarios)# 步骤3: 仿真模型构建与配置
# 在实际情况中,可能需要使用专业的仿真库或软件来构建电力系统模型# 假设有一个简单的电力系统模型的类
class PowerSystemSimulator:def __init__(self, base_power, base_voltage):self.base_power = base_powerself.base_voltage = base_voltagedef simulate(self, pv_output, load_profile):# 在此添加电力系统仿真的逻辑# 包括节点电压计算、潮流分析、损耗计算等# 返回仿真结果,如综合运行费用等simulated_result = simulate_power_flow(pv_output, load_profile, self.base_power, self.base_voltage)return simulated_result# 步骤4: 仿真运行及结果分析
# 创建电力系统仿真器实例
simulator = PowerSystemSimulator(base_power, base_voltage)# 遍历PV出力场景并进行仿真
for scenario in pv_output_scenarios:# 假设load_profile是一个负荷出力的数组,具体根据实际情况准备数据load_profile = prepare_load_profile()# 进行仿真运行simulation_result = simulator.simulate(scenario, load_profile)# 在这里进行结果分析analyze_simulation_result(simulation_result)

在实际应用中,仿真的复杂性和详细步骤取决于所用的仿真软件和模型的复杂性。上述示例代码是一个简单的框架,需要根据实际情况进行调整和扩展。

这篇关于文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于最优经济运行区域的主动配电网日前-日内协同调度方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492011

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

EMLOG程序单页友链和标签增加美化

单页友联效果图: 标签页面效果图: 源码介绍 EMLOG单页友情链接和TAG标签,友链单页文件代码main{width: 58%;是设置宽度 自己把设置成与您的网站宽度一样,如果自适应就填写100%,TAG文件不用修改 安装方法:把Links.php和tag.php上传到网站根目录即可,访问 域名/Links.php、域名/tag.php 所有模板适用,代码就不粘贴出来,已经打

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用