【深度学习】卷积神经网络的可视化---Visualization by activation Maximization

本文主要是介绍【深度学习】卷积神经网络的可视化---Visualization by activation Maximization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

The Overview:

Activation Maximization (AM)是用来可视化各个卷积层的输入偏好。 通过观测输入偏好,我们可以更好的了解CNN的卷积层到底学习到了什么。卷积学习得到的特征可以通过一帧合成图像来最大化神经元的激活。为了合成这个输入偏好,我们可以通过对CNN的输入像素进行反复迭代来最大化神经元的激活。

换言之,我们可以通过合成一个输入样式来激活神经元,使得神经元激活最大化的输入样式便是神经元的输入偏好,也就是通过输入偏好可以观察神经元到底学习了什么。

Activation Maximization 是由Erhan在2009年提出 D. Erhan, Y. Bengio, A. Courville and P. Vincent, Visualizing higher-layer features of a deep network, (2009), p3 。Erhan利用Activation Maximization观测了Deep Belief Net隐层神经元的输入偏好和Stacked Denoising Auto-Encoder在MNIST数据集学习到的特征。之后,Simonyan 用这个算法来可视化CNN的最后一层神经元。K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps。Google也通过这种方法来集成可视化特征样式应用在Inception网络中Inceptionism: Going deeper into neural networks。Yosinksi则将AM运用到更广泛的范围中,可以可视化CNN所有层中的各个神经元。Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

近来一些的AM算法则尝试对输出的样式进行在更加容易的解释和。总而言之,AM在解释神经元的interests和层次特征方面体现出了强大的能力。

Algorithm

AM算法是通过输入一帧合成样式图像 x ∗ x^{*} x来最大化神经元的激活函数,其表达式可以为:

x ∗ = a r g m a x x a i , l ( θ , x ) x^{*} = \mathop{argmax} \limits_{x} a_{i,l} (\theta, x) x=xargmaxai,l(θ,x)

其中 θ \theta θ表示为网络参数(权重weight与bias)。

算法流程可以分为以下四部:
(1) 设置一个随机的输入图像,获得某一层(i)的特定卷积(l)的激活 a i , l a_{i,l} ai,l
(2)在固定CNN参数的情况下,计算激活 a i , l a_{i,l} ai,l 与 输入图像的梯度 ∂ a i , l ∂ x \frac{\partial a_{i,l}}{\partial x} xai,l
(3) 通过迭代来更改输入图像的像素,从而使得激活最大化。此处采用梯度上升算法:
x = x + η ∗ ∂ a i , l ∂ x x = x + \eta * \frac{\partial a_{i,l}}{\partial x} x=x+ηxai,l
(4)这个过程终止在一个特定模式图像x∗,当图像没有任何噪音。该模式被视为该神经元的首选输入

注意:

如果是可视化CNN最后一层,我们应该采取logits,而不是softmax过的概率。这是因为softmax是通过normalize最后一层的概率介于0-1之间,最大化类别概率可以通过降低其他类别的置信概率得到。

实验

这里提供keras-blog的例子,该例子实现在VGG16网络:
keras实现方法见:https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
我复现了tensorflow的方法见:https://github.com/XiaotianM/CNN_Visual_tensorflow
在这里插入图片描述

这篇关于【深度学习】卷积神经网络的可视化---Visualization by activation Maximization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489080

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR