代码随想录算法训练营 | day50 动态规划 123.买卖股票的最佳时机Ⅲ,188.买卖股票的最佳时机Ⅳ

本文主要是介绍代码随想录算法训练营 | day50 动态规划 123.买卖股票的最佳时机Ⅲ,188.买卖股票的最佳时机Ⅳ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

刷题

123.买卖股票的最佳时机Ⅲ

题目链接 | 文章讲解 | 视频讲解

题目:给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:prices = [3,3,5,0,0,3,1,4]

  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

  • 示例 2:

  • 输入:prices = [1,2,3,4,5]

  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

  • 示例 4:

  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5

  • 0 <= prices[i] <= 10^5

思路及实现

动态规划五部曲:

1.确定dp数组以及下标的含义

一天一共就有五个状态,

0.没有操作 (其实我们也可以不设置这个状态)

  1. 第一次持有股票

  2. 第一次不持有股票

  3. 第二次持有股票

  4. 第二次不持有股票

dp[i] [j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i] [j]表示第i天状态j所剩最大现金。

需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?

一定是选最大的,所以 dp[i] [1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

同理可推出剩下状态部分:

dp[i] [3] = max(dp[i - 1] [3], dp[i - 1] [2] - prices[i]);

dp[i] [4] = max(dp[i - 1] [4], dp[i - 1] [3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

同理第二次卖出初始化dp[0] [4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp4已经包含了dp4的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4] [4]

以上五部都分析完了,不难写出如下代码:

/ 版本一
class Solution {public int maxProfit(int[] prices) {int len = prices.length;// 边界判断, 题目中 length >= 1, 所以可省去if (prices.length == 0) return 0;
​/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润dp[0][3] = -prices[0];
​for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}
​return dp[len - 1][4];}
}
​
// 版本二: 空间优化
class Solution {public int maxProfit(int[] prices) {int[] dp = new int[4]; // 存储两次交易的状态就行了// dp[0]代表第一次交易的买入dp[0] = -prices[0];// dp[1]代表第一次交易的卖出dp[1] = 0;// dp[2]代表第二次交易的买入dp[2] = -prices[0];// dp[3]代表第二次交易的卖出dp[3] = 0;for(int i = 1; i <= prices.length; i++){// 要么保持不变,要么没有就买,有了就卖dp[0] = Math.max(dp[0], -prices[i-1]);dp[1] = Math.max(dp[1], dp[0]+prices[i-1]);// 这已经是第二次交易了,所以得加上前一次交易卖出去的收获dp[2] = Math.max(dp[2], dp[1]-prices[i-1]);dp[3] = Math.max(dp[3], dp[2]+ prices[i-1]);}return dp[3];}
}

188.买卖股票的最佳时机Ⅳ

题目链接 | 文章讲解 | 视频讲解

题目:给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:k = 2, prices = [2,4,1]

  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

  • 示例 2:

  • 输入:k = 2, prices = [3,2,6,5,0,3]

  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100

  • 0 <= prices.length <= 1000

  • 0 <= prices[i] <= 1000

思路及实现

动规五部曲,分析如下:

1.确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i] [j] :第i天的状态为j,所剩下的最大现金是dp[i] [j]

j的状态表示为:

  • 0 表示不操作

  • 1 第一次买入

  • 2 第一次卖出

  • 3 第二次买入

  • 4 第二次卖出

  • .....

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

2.确定递推公式

还要强调一下:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i - 1] [0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

选最大的,所以 dp[i] [1] = max(dp[i - 1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

本题和动态规划:123.买卖股票的最佳时机III最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

第二次卖出初始化dp[0] [4] = 0;

所以同理可以推出dp[0] [j]当j为奇数的时候都初始化为 -prices[0]

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

最后一次卖出,一定是利润最大的,dp[prices.length() - 1] [2 * k]即红色部分就是最后求解。

以上分析完毕,代码如下:

class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][交易次数][是否持有股票]int len = prices.length;int[][][] dp = new int[len][k + 1][2];// dp数组初始化// 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润for (int i = 0; i <= k; i++) {dp[0][i][1] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 1; j <= k; j++) {// dp方程, 0表示不持有/卖出, 1表示持有/买入dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);}}return dp[len - 1][k][0];}
}// 版本二: 二维 dp数组
class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];// dp数组的初始化, 与版本一同理for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}//版本三:一维 dp数组 (下面有和卡哥邏輯一致的一維數組JAVA解法)
class Solution {public int maxProfit(int k, int[] prices) {if(prices.length == 0){return 0;}if(k == 0){return 0;}// 其实就是123题的扩展,123题只用记录2次交易的状态// 这里记录k次交易的状态就行了// 每次交易都有买入,卖出两个状态,所以要乘 2int[] dp = new int[2 * k];// 按123题解题格式那样,做一个初始化for(int i = 0; i < dp.length / 2; i++){dp[i * 2] = -prices[0];}for(int i = 1; i <= prices.length; i++){dp[0] = Math.max(dp[0], -prices[i - 1]);dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);// 还是与123题一样,与123题对照来看// 就很容易啦for(int j = 2; j < dp.length; j += 2){dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]);dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]);}}// 返回最后一次交易卖出状态的结果就行了return dp[dp.length - 1];}
}

这篇关于代码随想录算法训练营 | day50 动态规划 123.买卖股票的最佳时机Ⅲ,188.买卖股票的最佳时机Ⅳ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488554

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n