MATLAB运动学之蒙特卡罗法求积分与机器人工作域分析

本文主要是介绍MATLAB运动学之蒙特卡罗法求积分与机器人工作域分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特卡罗法又叫做统计模拟法、随机抽样技术,是一种随机模拟方法以概率和统计理论方法为基础的一种计算方法,通俗来说是可以使用随机数来解决很多计算问题的一种方法,很直观简单,尤其对于一些求解积分无解的情况,非常好使且简单粗暴。

蒙特卡罗法求面积(定积分)

y = x² 为例,我们需要求出 x 在[0,10]相对应的 y 在[0,100] 所围成的曲线面积,在我们有了微积分的知识之后,我们可以通过对这个函数的原函数做差来求解(1/3*10³-1/3*0³=1000/3),这种叫做解析解,也就是通过数学公式求出来的解。

除了这种求积分的方法,我们接下来介绍的就是蒙特卡罗法。
将大量随机点散落到整个矩形,然后计算散落在围成曲线下的点的数量的占比就可以得出曲线面积了。
曲线围成的面积=整个矩形区间的面积 * 曲线下方的点的个数的占比

需要注意的是,蒙特卡罗法的前提条件是区间的值要么全是正值,要么全是负值,如果不是的情况就分区再求积分。 

是不是有了这方法,不管什么曲线围成的面积,都不在话下,就这么简单粗暴好用哈哈。

%使用非负整数 seed 为随机数生成函数提供种子,以使 rand、randi 和 randn 生成可预测的数字序列。
rng(0);
set(0,'defaultAxesFontName', 'Monospaced');  % 防止中文乱码
set(gcf, 'position', [10, 20, 1000, 700]);
%f = suptitle('求解y=x^2定积分');
%set(f, 'fontsize', 20); 
L = 10;  % 积分区间长度
fs = 1 / 1e3; % 采样率0.001
x = 0 : fs : L;
y = x .^ 2;  
S = L * (L ^ 2);  %矩形面积,这个示例就是1000% 随机点的数量(作对比)
N_Lis = [10, 100, 1000, 10000];% 解析解(原函数做差值)
res_integ = 1/3 * (10^3 - 0^3); % 近似解
%figure(1); clf;
for n = 1 : length(N_Lis)cnt = 0;x_random = L * rand(1, N_Lis(n));  % 随机点xy_random = L ^ 2 * rand(1, N_Lis(n));  % 随机点y% 统计曲线下面的点的数量for i = 1 : N_Lis(n)if y_random(i) <= x_random(i) ^ 2cnt = cnt + 1;endendres_appro = cnt / N_Lis(n) * S;% 画图对比subplot(2, 2, n);plot(x, y, 'k', 'linewidth', 2); hold on;area(x, y, 'facecolor','c'); hold on;scatter(x_random, y_random, 10, 'r', 'filled', 'markerfacealpha', 0.5);xlabel('x'); ylabel('y'); set(gca, 'fontsize', 14);title(['数学解≈', num2str(res_integ, '%.1f'), '   近似解≈', num2str(res_appro, '%.1f')]);
end

可以看到当随机点从10个增加到10000个的时候,结果对比也可以知道,求出来的这个近似解就越接近解析解(真实值),那么我们在生活当中如果遇到需要求面积的情况,而且连曲线的函数都不清楚的情况下,我们应该知道如何求曲线围成的面积了,比如说,可以撒上一层豆子或者是水,水是最好的(连续,不离散),然后称量下曲线围成的豆子或者水的重量在整个矩形中的占比就可以知道围成的面积了。

无解的情况

有时候求积分是无解的情况,比如下面的三个函数所围成的面积,我们就不能通过数学公式得到解析解或者说非常困难,但是可以快速使用蒙特卡罗法来求其近似解: 

T = 20;
fs = 1 / 1e3;
x0 = -T : fs : T;
y1 = sin(x0.^ 2);
y2 = sin(x0) ./ x0;
y3 = exp(-x0.^2);figure(1); clf;
subplot(3, 1, 1);
plot(x0, y1, 'linewidth', 1.5); ylabel('y'); title('y=sin(x^2)'); set(gca, 'fontsize', 12);
subplot(3, 1, 2);
plot(x0, y2, 'linewidth', 1.5); ylabel('y'); title('y=sin(x)/x'); set(gca, 'fontsize', 12);
subplot(3, 1, 3);
plot(x0, y3, 'linewidth', 1.5); xlabel('x'); ylabel('y'); title('y=e^{-x^2}'); set(gca, 'fontsize', 12);% 绘制围成区域
x = 0 : fs : 2;
y11 = sin(x.^ 2);
y21 = sin(x) ./ x;
y31 = exp(-x.^2);figure(2); clf;
plot(x, y11, 'linewidth', 1.5); hold on;
plot(x, y21, 'linewidth', 1.5); hold on;
plot(x, y31, 'linewidth', 1.5); hold on;
area(x(y11>y31 & y21>y11), y11(y11>y31 & y21>y11), 'facecolor', 'c', 'edgealpha', 0); hold on;
area(x(y11>y31 & y21>y11), y31(y11>y31 & y21>y11), 'facecolor', 'w', 'edgealpha', 0); hold on;
h = legend('y=sin(x^2)', 'y=sin(x)/x', 'y=e^{-x^2}', 'location', 'southwest');
xlabel('x'); ylabel('y'); title('求三条曲线围成的面积'); set(gca, 'fontsize', 12); set(h, 'fontsize', 12);% 蒙特卡罗法求面积
L = 2; 
H = 3;
S = L * H;
N_Lis = [1e1, 1e2, 1e3, 1e4];
figure(3); clf;
for n = 1 : length(N_Lis)N = N_Lis(n);x_random = L * rand(1, N);y_random = H * rand(1, N) - 1;cnt = 0;for i = 1 : Nif (y_random(i) <= sin(x_random(i)^2)) && (y_random(i) <= sin(x_random(i))/x_random(i)) ...&& (y_random(i) >= exp(-x_random(i)^2))cnt = cnt + 1;endendres_appro = cnt / N * S;subplot(2, 2, n);plot(x, y11, 'linewidth', 1.5); hold on;plot(x, y21, 'linewidth', 1.5); hold on;plot(x, y31, 'linewidth', 1.5); hold on;area(x(y11>y31 & y21>y11), y11(y11>y31 & y21>y11), 'facecolor', 'c', 'edgealpha', 0); hold on;area(x(y11>y31 & y21>y11), y31(y11>y31 & y21>y11), 'facecolor', 'w', 'edgealpha', 0); hold on;scatter(x_random, y_random, 10, 'r', 'filled', 'markerfacealpha', 0.5);xlabel('x'); ylabel('y'); title(['样本数=', num2str(N_Lis(n)), '   近似解≈', num2str(res_appro, '%.2f')]); set(gca, 'fontsize', 14); 
endh = suptitle('蒙特卡罗法求图形面积');
set(h, 'fontsize', 18);
set(gcf, 'position', [10, 20, 800, 700]);

只需要将随机点(样本数)增加到基本覆盖整个区域,我们就可以得到所围成的图形里面的样本数的占比,这样就近似求出了这个所围成的面积了。

机器人工作区域

在机器人领域,我们也可以使用蒙特卡罗法模拟出末端执行器的运动区域,这样对于我们关注机器人的所能工作的范围有一个更直观的了解。

%定义D-H参数
a2 = 0.420;
a3 = 0.375;
d2 = 0.138 + 0.024;
d3 =-0.127 -0.024;
d4 = 0.114 + 0.021;
d5 = 0.114 + 0.021;
d6 = 0.090 + 0.021;for i = 1:100000
%角度范围是[-pi,pi],rand返回(0,1) 内均匀分布的随机数
%模拟各关节的角度
theta1 = -pi + 2*pi*rand;
theta2 = 0 + 2*pi*rand;
theta3 =-(5/6)*pi + (5/3)*pi*rand;
theta4 = -pi + 2*pi*rand;
theta5 = -pi + 2*pi*rand;
theta6 = -pi + 2*pi*rand;%XYZ就是关节的末端位置值(不考虑方向)
x(i) = a2*cos(theta1)*cos(theta2)+a3*cos(theta1)*cos(theta2+theta3)-d5*cos(theta1)*sin(theta2+theta3+theta4)-sin(theta1)*(d2+d3+d4)-d6*(cos(theta5)*sin(theta1)-cos(theta1)*cos(theta2+theta3+theta4)*sin(theta5));
01:46y(i) = d6*(cos(theta1)*cos(theta5)+cos(theta2+theta3+theta4)*sin(theta1)*sin(theta5))+a3*sin(theta1)*cos(theta2+theta3)-d5*sin(theta1)*sin(theta2+theta3+theta4)+cos(theta1)*(d2+d3+d4)+a2*cos(theta2)*sin(theta1);z(i) =-a3*sin(theta2+theta3)-a2*sin(theta2)-d5*cos(theta2+theta3+theta4)-d6*sin(theta5)*sin(theta2+theta3+theta4);
endplot3(x,y,z,'b.','MarkerSize',0.5)

我们这里让机器人的关节随机运行10万次,也就是10万个随机点,通过plot3函数,画出这个六轴机械臂末端执行器所处空间的能够工作的范围了,基本上可以看到能够覆盖机器人所能够工作的区域了。

也可以观察XY组成的侧面,或者另外两根轴组成的侧面情况

其中中间白色圆心部分,是机械臂末端所不能运动到的地方。

这篇关于MATLAB运动学之蒙特卡罗法求积分与机器人工作域分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485773

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

工作常用指令与快捷键

Git提交代码 git fetch  git add .  git commit -m “desc”  git pull  git push Git查看当前分支 git symbolic-ref --short -q HEAD Git创建新的分支并切换 git checkout -b XXXXXXXXXXXXXX git push origin XXXXXXXXXXXXXX

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除