树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象

2023-12-12 10:44

本文主要是介绍树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、需要准备的硬件

  1. Raspiberry 4b
  2. 两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)
  3. 二自由度舵机云台(如下图)
  4. Raspiberry CSI 摄像头
    组装后的效果:
    在这里插入图片描述

二、项目目标

追踪特定颜色的物体:
当物体移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把该物体放到视界的中心位置,我在这里追踪的是一支红色的铅笔。

三、具体步骤

3.1 获得被追踪对象的颜色参数

  1. 提前准备一张图片(如下图),可以直接用树莓派的CSI摄像头拍摄并保存,具体方法可以在我之前的文章里找到
    原始图片

  2. 利用下面的代码并通过调整滑块(Trackbar)获得红色铅笔的HSV颜色参数,为接下来的颜色追踪做准备

***color_detection.py***
import cv2
path='test_full.jpg'
cv2.namedWindow("TrackBar")def nothing(x):pass
#创建滑块控件
cv2.createTrackbar("Hue Min","TrackBar",0,179,nothing)
cv2.createTrackbar("Hue Max","TrackBar",179,179,nothing)
cv2.createTrackbar("Sat Min","TrackBar",0,255,nothing)
cv2.createTrackbar("Sat Max","TrackBar",255,255,nothing)
cv2.createTrackbar("Val Min","TrackBar",0,255,nothing)
cv2.createTrackbar("Val Max","TrackBar",255,255,nothing)while True:#读取目标图片image=cv2.imread(path)image=cv2.resize(image,(640,480))imgHSV=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)hueLow=cv2.getTrackbarPos("Hue Min","TrackBar")hueHigh=cv2.getTrackbarPos("Hue Max","TrackBar")satLow=cv2.getTrackbarPos("Sat Min","TrackBar")satHigh=cv2.getTrackbarPos("Sat Max","TrackBar")valLow=cv2.getTrackbarPos("Val Min","TrackBar")valHigh=cv2.getTrackbarPos("Val Max","TrackBar")print(hueLow,hueHigh,satLow,satHigh,valLow,valHigh)#创建掩膜mask=cv2.inRange(imgHSV,(hueLow,satLow,valLow),(hueHigh,satHigh,valHigh))image=cv2.bitwise_and(image,image,mask=mask)#显示图像cv2.imshow('Origial',image)cv2.imshow('HSV',imgHSV)#按q键退出if cv2.waitKey(1)==ord('q'):break
cv2.destroyAllWindows() 
  1. 运行color_detection.py,并调整滑块(TrackBar)如下图,当然你的被追踪物体的颜色不同,参数也必然不同。
    滑块调整
    这时你会发现,红色铅笔被显示出来,其它部分被掩膜遮挡,记下Hue Min, Hui Max, Sat Min, Sat Max, Val Min, Val Max这六个数值在接下来的代码中会用到。
    在这里插入图片描述

3.2 目标追踪代码

  1. 输入color_detection.py里得到的六个参数到相应位置,注释里已经注明。
***color_tracking.py***
import cv2
from picamera2 import Picamera2
import time
import numpy as np
from servo import Servo
picam2 = Picamera2()#偏航伺服电机连接上GPIO19脚,俯仰伺服电机信号线连接到GPIO16脚上
pan=Servo(pin=19)
tilt=Servo(pin=16)panAngle=0
tiltAngle=0pan.set_angle(panAngle)
tilt.set_angle(tiltAngle)#初始化pi camera
dispW=1280
dispH=720
picam2.preview_configuration.main.size = (dispW,dispH)
picam2.preview_configuration.main.format = "RGB888"
picam2.preview_configuration.controls.FrameRate=30
picam2.preview_configuration.align()
picam2.configure("preview")
picam2.start()
fps=0
pos=(30,60)
font=cv2.FONT_HERSHEY_SIMPLEX
height=1.5
weight=3
myColor=(0,0,255)def nothing(x):passcv2.namedWindow('myTracker')
#输入color_detection.py里得到的六个参数到xxx位置,比如cv2.createTrackbar('Hue Low','myTracker',xxx,179,nothing)
cv2.createTrackbar('Hue Low','myTracker',56,179,nothing)
cv2.createTrackbar('Hue High','myTracker',179,179,nothing)
cv2.createTrackbar('Sat Low','myTracker',165,255,nothing)
cv2.createTrackbar('Sat High','myTracker',255,255,nothing)
cv2.createTrackbar('Val Low','myTracker',77,255,nothing)
cv2.createTrackbar('Val High','myTracker',255,255,nothing)while True:tStart=time.time()#获取取摄像头图片frame= picam2.capture_array()frame=cv2.flip(frame,1)frameHSV=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)cv2.putText(frame,str(int(fps))+' FPS',pos,font,height,myColor,weight)hueLow=cv2.getTrackbarPos('Hue Low','myTracker')satLow=cv2.getTrackbarPos('Sat Low','myTracker')valLow=cv2.getTrackbarPos('Val Low','myTracker')hueHigh=cv2.getTrackbarPos('Hue High','myTracker')satHigh=cv2.getTrackbarPos('Sat High','myTracker')valHigh=cv2.getTrackbarPos('Val High','myTracker')lowerBound=np.array([hueLow,satLow,valLow])upperBound=np.array([hueHigh,satHigh,valHigh])myMask=cv2.inRange(frameHSV,lowerBound,upperBound)myMaskSmall=cv2.resize(myMask,(int(dispW/2),int(dispH/2)))myObject=cv2.bitwise_and(frame,frame, mask=myMask)myObjectSmall=cv2.resize(myObject,(int(dispW/2),int(dispH/2)))contours,junk=cv2.findContours(myMask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)if len(contours)>0:contours=sorted(contours,key=lambda x:cv2.contourArea(x),reverse=True)#cv2.drawContours(frame,contours,-1,(255,0,0),3)contour=contours[0]x,y,w,h=cv2.boundingRect(contour)cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),3)#偏航电机纠偏X轴方向上的偏差,大于30度,偏航角度减小,小于-30度,偏航角度增加errorX=dispW/2-(x+w/2)if errorX>30:panAngle=panAngle-1if panAngle<-90:panAngle=-90pan.set_angle(panAngle)if errorX<-30:panAngle=panAngle+1if panAngle>90:panAngle=90pan.set_angle(panAngle)#俯仰电机纠偏Y轴方向上的偏差,大于30度,俯仰角度减小,小于-30度,俯仰角度增加errorY=dispH/2-(y+h/2)if errorY>30:tiltAngle=tiltAngle-1if tiltAngle<-90:tiltAngle=-90tilt.set_angle(tiltAngle)if errorY<-30:tiltAngle=tiltAngle+1if tiltAngle>90:tiltAngle=90tilt.set_angle(tiltAngle)cv2.imshow('Camera',frame)cv2.imshow('Mask',myMaskSmall)cv2.imshow('My Object',myObjectSmall)#按q键退出if cv2.waitKey(1)==ord('q'):pan.stop()tilt.stop()picam2.stop()breaktEnd=time.time()loopTime=tEnd-tStartfps=.9*fps + .1*(1/loopTime)
cv2.destroyAllWindows()
  1. 上述代码中的from servo import Servo导入servo,这个库是没有的,我们要手动创建这个库,在object_tracking.py所在的目录下新建servo.py文件,复制下面的代码到文件中
#!/usr/bin/env python3
import pigpio
from time import sleep
# Start the pigpiod daemon
import subprocess
result = None
status = 1
for x in range(3):p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)result = p.stdout.read().decode('utf-8')status = p.poll()if status == 0:breaksleep(0.2)
if status != 0:print(status, result)
'''
> Use the DMA PWM of the pigpio library to drive the servo
> Map the servo angle (0 ~ 180 degree) to (-90 ~ 90 degree)'''class Servo():MAX_PW = 1250  # 0.5/20*100MIN_PW = 250 # 2.5/20*100_freq = 50 # 50 Hz, 20msdef __init__(self, pin, min_angle=-90, max_angle=90):self.pi = pigpio.pi()self.pin = pin self.pi.set_PWM_frequency(self.pin, self._freq)self.pi.set_PWM_range(self.pin, 10000)      self.angle = 0self.max_angle = max_angleself.min_angle = min_angleself.pi.set_PWM_dutycycle(self.pin, 0)def set_angle(self, angle):if angle > self.max_angle:angle = self.max_angleelif angle < self.min_angle:angle = self.min_angleself.angle = angleduty = self.map(angle, -90, 90, 250, 1250)self.pi.set_PWM_dutycycle(self.pin, duty)def get_angle(self):return self.angledef stop(self):self.pi.set_PWM_dutycycle(self.pin, 0)self.pi.stop()# will be called automatically when the object is deleted# def __del__(self):#     passdef map(self, x, in_min, in_max, out_min, out_max):return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_minif __name__ =='__main__':from vilib import Vilib# Vilib.camera_start(vflip=True,hflip=True) # Vilib.display(local=True,web=True)pan = Servo(pin=13, max_angle=90, min_angle=-90)tilt = Servo(pin=12, max_angle=30, min_angle=-90)panAngle = 0tiltAngle = 0pan.set_angle(panAngle)tilt.set_angle(tiltAngle)sleep(1)while True:for angle in range(0, 90, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(90, -90, -1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(-90, 0, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)
  1. 运行object_tracking.py,移动红色铅笔,摄像头就会自动追踪该对象
    在这里插入图片描述

这篇关于树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484322

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Java实现将byte[]转换为File对象

《Java实现将byte[]转换为File对象》这篇文章将通过一个简单的例子为大家演示Java如何实现byte[]转换为File对象,并将其上传到外部服务器,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言1. 问题背景2. 环境准备3. 实现步骤3.1 从 URL 获取图片字节数据3.2 将字节数组

Javascript访问Promise对象返回值的操作方法

《Javascript访问Promise对象返回值的操作方法》这篇文章介绍了如何在JavaScript中使用Promise对象来处理异步操作,通过使用fetch()方法和Promise对象,我们可以从... 目录在Javascript中,什么是Promise1- then() 链式操作2- 在之后的代码中使

MyBatis的配置对象Configuration作用及说明

《MyBatis的配置对象Configuration作用及说明》MyBatis的Configuration对象是MyBatis的核心配置对象,它包含了MyBatis运行时所需的几乎所有配置信息,这个对... 目录MyBATis配置对象Configuration作用Configuration 对象的主要作用C

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

Java对象和JSON字符串之间的转换方法(全网最清晰)

《Java对象和JSON字符串之间的转换方法(全网最清晰)》:本文主要介绍如何在Java中使用Jackson库将对象转换为JSON字符串,并提供了一个简单的工具类示例,该工具类支持基本的转换功能,... 目录前言1. 引入 Jackson 依赖2. 创建 jsON 工具类3. 使用示例转换 Java 对象为