本文主要是介绍RandomForest随机森林感想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
摘要:随机森林和决策树相比,能更好的防止过拟合。虽然每个基分类器很弱,但最后组合的结果通常很强。
在机器学习算法中,有一类算法比较特别,叫组合算法(Ensemble),即将多个基算法(Base)组合起来使用。每个基算法单独预测,最后的结论由全部基算法进行投票(用于分类问题)或者求平均(包括加权平均,用于回归问题)。
组合算法中,一类是Bagging(装袋),另一类是Boosting(提升)。
bagging:bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出
这篇关于RandomForest随机森林感想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!