KL divergence

2023-12-11 11:32
文章标签 kl divergence

本文主要是介绍KL divergence,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 真正的概率分布: A0 = 1/2,A1= 1/2

模型1:b1 = 1/4, b2 = 3/4

模型2:  c1 = 1/8, c2 = 7/8

哪一个模型更好的接近真正的概率分布?


D(A|| B)= 1/2log(1/2 / 1/4) + 1/2 log(1/2 / 3/4)

D (A || C)  = 1/2 log(1/2 / 1/8) + 1/2 log(1/2 / 7/8)

显然  B 好

这篇关于KL divergence的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/480528

相关文章

KL距离(衡量两个概率分布的差异情况)

KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。 KL距离全称为Kullback-Leibler Divergence,也被称为相对熵。公式为: 感性的理解,KL距离可以解释为在相同的事件空间P(x)中两个概率P(x)和Q(x)分

KL散度(Kullback-Leibler divergence)

K L KL KL散度( K u l l b a c k − L e i b l e r d i v e r g e n c e Kullback-Leibler\ divergence Kullback−Leibler divergence),也被称为相对熵、互熵或鉴别信息,是用来衡量两个概率分布之间的差异性的度量方法。以下是对 K L KL KL散度的详细解释: 定义 K L KL

信息熵,交叉熵,相对熵,KL散度

熵,信息熵在机器学习和深度学习中是十分重要的。那么,信息熵到底是什么呢?   首先,信息熵是描述的一个事情的不确定性。比如:我说,太阳从东方升起。那么这个事件发生的概率几乎为1,那么这个事情的反应的信息量就会很小。如果我说,太阳从西方升起。那么这就反应的信息量就很大了,这有可能是因为地球的自转变成了自东向西,或者地球脱离轨道去到了别的地方,那么这就可能导致白天变成黑夜,热带雨林将

从概率角度出发,对交叉熵和 KL 散度进行分析和推导

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 1. 定义与推导 交叉熵(Cross Entropy) 交叉熵是一个衡量两个概率分布之间差异的指标。在机器学习中,这通常用于衡量真实标签的分布与模型预测分布之间的差异。对于两个概率分布 P P P 和 Q Q Q,其中 P P P 是真实分布, Q Q Q 是模型预测分布,交叉熵的定义为:

[机器学习] Pytorch19种损失函数理解[上]— L1、MSE、CrossEntropy、KL、BCE、BCEWithLogits loss function

损失函数通过torch.nn包实现。 文章目录 1 基本用法2 损失函数(前6种)2-1 L1范数损失 —— L1_Loss2-2 均方误差损失 —— MSELoss2-3 交叉熵损失 CrossEntropyLoss2-4 KL 散度损失 KLDivLoss2-5 二元交叉熵损失 BCELoss2-6 BCEWithLogitsLoss 1 基本用法 criterion =

KL散度交叉熵信息熵不确定性信息度量

0.起源 物理学中的热力学 熵:度量分子在物理空间中的混乱程度; 1.信息熵 信息熵: 度量信息量的多少; 以离散信息为例 离散符号:x1,x2,…,xn; 信息中各符号出现的概率:p1,p2,…,pn; 信息的不确定性函数: f: p—f(p); p越大,信息的不确定性越小,因此f是一个 减函数; 假设前提: 各符号的出现是相互独立的(与实际不符) 则:f(p1,p2)=f(p1)+f(p

KL divergence(KL 散度)详解

本文用一种浅显易懂的方式说明KL散度。 参考资料 KL散度本质上是比较两个分布的相似程度。 现在给出2个简单的离散分布,称为分布1和分布2. 分布1有3个样本, 其中A的概率为50%, B的概率为40%,C的概率为10% 分布2也有3个样本: 其中A的概率为50%,B的概率为10%,C的概率为40%。 现在想比较分布1和分布2的相似程度。 直观看上去分布1和分布2中样本A的概率是一样的

熵、交叉熵和KL散度的基本概念和交叉熵损失函数的通俗介绍

交叉熵(也称为对数损失)是分类问题中最常用的损失函数之一。但是,由于当今庞大的库和框架的存在以及它们的易用性,我们中的大多数人常常在不了解熵的核心概念的情况下着手解决问题。所以,在这篇文章中,让我们看看熵背后的基本概念,把它与交叉熵和KL散度联系起来。我们还将查看一个使用损失函数作为交叉熵的分类问题的示例。 什么是熵? 为了开始了解熵到底指的是什么,让我们深入了解信息理论的一些基础知识。在这个

KL散度 pytorch实现

KL散度 KL Divergence D K L D_{KL} DKL​ 是衡量两个概率分布之间的差异程度。 考虑两个概率分布 P P P, Q Q Q(譬如前者为模型输出data对应的分布,后者为期望的分布),则KL散度的定义如下: D K L = ∑ x P ( x ) l o g P ( x ) Q ( x ) D_{KL} = \sum_xP(x)log\frac{P(x)}{Q

神经网络数学基础-香浓信息量、信息熵、交叉熵、相对熵(KL散度)

香浓信息量 这里以连续随机变量的情况为例。设 为随机变量X的概率分布,即 为随机变量 在 处的概率密度函数值,随机变量 在 处的香农信息量定义为: 这时香农信息量的单位为比特,香农信息量用于刻画消除随机变量在处的不确定性所需的信息量的大小。 如果非连续型随机变量,则为某一具体随机事件的概率。 为什么是这么一个表达式呢?想具体了解的可以参考如下的讨论: 知乎-香农的信息论究