51单片机独立按键以及矩阵按键的使用以及其原理--独立按键 K1 控制 D1 指示灯亮灭以及数码管显示矩阵按键 S1-S16 按下后键值 0-F

本文主要是介绍51单片机独立按键以及矩阵按键的使用以及其原理--独立按键 K1 控制 D1 指示灯亮灭以及数码管显示矩阵按键 S1-S16 按下后键值 0-F,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IO 的使用–按键

本文主要涉及8051单片机按键的使用,包括独立按键以及矩阵按键的使用以及其原理,其中代码实例包括:
1.独立按键 K1 控制 D1 指示灯亮灭
2.通过数码管显示矩阵按键 S1-S16 按下后键值 0-F

文章目录

  • IO 的使用--按键
    • 一、按键消抖
    • 二、独立按键
      • 独立按键 K1 控制 D1 指示灯亮灭
    • 二、 矩阵按键
      • 通过数码管显示矩阵按键 S1-S16 按下后键值 0-F

按键是一种电子开关,使用时轻轻按开关按钮就可使开关接通,当松开手时, 开关断开。

在了解按键之前,我们需要先了解一下按键消抖

一、按键消抖

通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,电压信号
如下图所示:
在这里插入图片描述

由于机械点的弹性作用,按键开关在闭合时不会马上稳定的接通,在断开时也不会一下子断开,因而在闭合和断开的瞬间均伴随着一连串的抖动。抖动时间的长短由按键的机械特性决定的,一般为 5ms 到 10ms。

按键消抖有两种方式,一种是硬件消抖,另一种是软件消抖。为了使电路更加简单,通常采用软件消抖。

常用的软件去抖动方法:
1,先设置 IO 口为高电平(由于开发板 IO 都有上拉电阻,所以默认 IO 为高
电平)。
2,读取 IO 口电平确认是否有按键按下。
3,如有 IO 电平为低电平后,延时几个毫秒
4,再读取该 IO 电平,如果仍然为低电平,说明按键按下。
5,执行按键控制程序。

二、独立按键

独立按键电路构成是由各个按键的一个管脚连接在一起接地,按键其他引脚分别接到单片机 IO 口。

独立按键的原理图如下:
在这里插入图片描述

从上图中可以看出,4 个独立按键的控制管脚连接到 51 单片机的 P3.0-P3.3脚上。其中 K1 连接在 P3.1 上,K2 连接在 P3.0 上,K3 连接在 P3.2 上,K4 连接在 P3.3 上。4 个按键另一端全部连接在 GND,当按键按下后,对应 IO 口即为低电平

独立按键 K1 控制 D1 指示灯亮灭

#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
//定义独立按键控制脚
sbit KEY1=P3^1;
sbit KEY2=P3^0;
sbit KEY3=P3^2;
sbit KEY4=P3^3;
//定义 LED1 控制脚
sbit LED1=P2^0;
//使用宏定义独立按键按下的键值
#define KEY1_PRESS 1
#define KEY2_PRESS 2
#define KEY3_PRESS 3
#define KEY4_PRESS 4
#define KEY_UNPRESS 0void delay_10us(u16 ten_us)
{
while(ten_us--);
}u8 key_scan(u8 mode)
{static u8 key=1;if(mode)key=1;//连续扫描按键if(key==1&&(KEY1==0||KEY2==0||KEY3==0||KEY4==0))//任意按键按下{delay_10us(1000);//消抖key=0;if(KEY1==0)return KEY1_PRESS;else if(KEY2==0)return KEY2_PRESS;else if(KEY3==0)return KEY3_PRESS;else if(KEY4==0)return KEY4_PRESS;}else if(KEY1==1&&KEY2==1&&KEY3==1&&KEY4==1) //无按键按下{key=1;}return KEY_UNPRESS;
}
void main()
{
u8 key=0;
while(1)
{key=key_scan(0);if(key==KEY1_PRESS)//检测按键 K1 是否按下LED1=!LED1;//LED1 状态翻转
}
}

key_scan 函数带一个形参 mode,该参数用来设定是否连续扫描按键,如果mode 为 0只能操作一次按键,只有当按键松开后才能触发下次的扫描,这样做的好处是可以防止按下一次出现多次触发的情况。如果 mode 为 1,函数是支持连续扫描的,即使按键未松开,在函数内部有 if(mode==1)这条判断语句,因此 key 始终是等于 1 的,所以可以连续扫描按键,当按下某个按键,会一直返回这 个按键的键值,这样做的好处是可以很方便实现连按操作.

二、 矩阵按键

无论是独立键盘还是矩阵键盘,单片机检测其是否被按下的依据都是一样的,也就是检测与该键对应的 I/O 口是否为低电平。独立键盘有一端固定为低电平,此种方式编程比较简单。 而矩阵键盘两端都与单片机 I/O 口相连,因此在检测时需编程通过单片机 I/O 口送出低电平。检测方法有多种,最常用的是行列扫描线翻转法

行列扫描法检测时,先送一列为低电平,其余几列全为高电平(此时我们确定了列数),然后立即轮流检测一次各行是否有低电平,若检测到某一行为低电平(这时我们又确定了行数),则我们便可确认当前被按下的键是哪一行哪一列的,用同样方法轮流送各列一次低电平,再轮流检测一次各行是否变为低电平,这样即可检测完所有的按键,当有键被按下时便可判断出按下的键是哪一个键。当然我们也可以将行线置低电平,扫描列是否有低电平。从而达到整个键盘的检测。

线翻转法,就是使所有行线为低电平时,检测所有列线是否有低电平,如果有,就记录列线值;然后再翻转,使所有列线都为低电平,检测所有行线的值,由于有按键按下,行线的值也会有变化,记录行线的值。从而就可以检测到全部按键。

在这里插入图片描述

4*4 矩阵按键引出的 8 根控制线直接连接到 51 单片机的P1 口上。电路中的 P17 连接矩阵键盘的第 1 行,P13 连接矩阵键盘第 1 列

通过数码管显示矩阵按键 S1-S16 按下后键值 0-F

#include "reg52.h"
typedef unsigned int u16; //对系统默认数据类型进行重定义
typedef unsigned char u8;
#define KEY_MATRIX_PORT P1 //使用宏定义矩阵按键控制口
#define SMG_A_DP_PORT P0 //使用宏定义数码管段码口
//共阴极数码管显示 0~F 的段码数据
u8 gsmg_code[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void delay_10us(u16 ten_us)
{while(ten_us--);
}
//行列式扫描方式
u8 key_matrix_ranks_scan(void)
{u8 key_value=0;KEY_MATRIX_PORT=0xf7;//给第一列赋值 0,其余全为 1if(KEY_MATRIX_PORT!=0xf7)//判断第一列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第一列按键按下后的键值{case 0x77: key_value=1;break;case 0xb7: key_value=5;break;case 0xd7: key_value=9;break;case 0xe7: key_value=13;break;}}while(KEY_MATRIX_PORT!=0xf7);//等待按键松开KEY_MATRIX_PORT=0xfb;//给第二列赋值 0,其余全为if(KEY_MATRIX_PORT!=0xfb)//判断第二列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第二列按键按下后的键值{case 0x7b: key_value=2;break;case 0xbb: key_value=6;break;case 0xdb: key_value=10;break;case 0xeb: key_value=14;break;}}while(KEY_MATRIX_PORT!=0xfb);//等待按键松开KEY_MATRIX_PORT=0xfd;//给第三列赋值 0,其余全为 1if(KEY_MATRIX_PORT!=0xfd)//判断第三列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第三列按键按下后的键值{case 0x7d: key_value=3;break;case 0xbd: key_value=7;break;case 0xdd: key_value=11;break;case 0xed: key_value=15;break;}}while(KEY_MATRIX_PORT!=0xfd);//等待按键松开KEY_MATRIX_PORT=0xfe;//给第四列赋值 0,其余全为 1if(KEY_MATRIX_PORT!=0xfe)//判断第四列按键是否按下{delay_10us(1000);//消抖switch(KEY_MATRIX_PORT)//保存第四列按键按下后的键值{case 0x7e: key_value=4;break;case 0xbe: key_value=8;break;case 0xde: key_value=12;break;case 0xee: key_value=16;break;}}while(KEY_MATRIX_PORT!=0xfe);//等待按键松开return key_value;
}//线翻转式扫描方式
u8 key_matrix_flip_scan(void)
{
static u8 key_value=0;
KEY_MATRIX_PORT=0x0f;//给所有行赋值 0,列全为 1
if(KEY_MATRIX_PORT!=0x0f)//判断按键是否按下
{delay_10us(1000);//消抖if(KEY_MATRIX_PORT!=0x0f)
{
//测试列
KEY_MATRIX_PORT=0x0f;
switch(KEY_MATRIX_PORT)//保存行为 0,按键按下后的列值
{case 0x07: key_value=1;break;case 0x0b: key_value=2;break;case 0x0d: key_value=3;break;case 0x0e: key_value=4;break;
}
//测试行
KEY_MATRIX_PORT=0xf0;
switch(KEY_MATRIX_PORT)//保存列为 0,按键按下后的键值
{case 0x70: key_value=key_value;break;case 0xb0: key_value=key_value+4;break;case 0xd0: key_value=key_value+8;break;case 0xe0: key_value=key_value+12;break;
}while(KEY_MATRIX_PORT!=0xf0);//等待按键松开}}elsekey_value=0;return key_value;
}void main()
{
u8 key=0;
while(1)
{
key=key_matrix_ranks_scan();
if(key!=0)
SMG_A_DP_PORT=gsmg_code[key-1];//得到的按键值减 1 换算成数组下标
对应 0-F 段码
}
}

上述学习资料都是来自普中科技😀

这篇关于51单片机独立按键以及矩阵按键的使用以及其原理--独立按键 K1 控制 D1 指示灯亮灭以及数码管显示矩阵按键 S1-S16 按下后键值 0-F的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476743

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学