C/C++,优化算法——双离子推销员问题(Bitonic Travelling Salesman Problem)的计算方法与源代码

本文主要是介绍C/C++,优化算法——双离子推销员问题(Bitonic Travelling Salesman Problem)的计算方法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式


// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;

// Size of the array a[]
const int mxN = 1005;

// Structure to store the x and
// y coordinates of a point
struct Coordinates {
    double x, y;
} a[mxN];

// Declare a 2-D dp array
float dp[mxN][mxN];

// Function to calculate the
// distance between two points
// in a Euclidian plane
float distance(int i, int j)
{
    // Return the distance
    return sqrt(
      (a[i].x - a[j].x) * (a[i].x - a[j].x)
    + (a[i].y - a[j].y) * (a[i].y - a[j].y));
}

// Utility recursive function to find
// the bitonic tour distance
float findTourDistance(int i, int j)
{
    // Memoization
    if (dp[i][j] > 0)
        return dp[i][j];

    // Update dp[i][j]
    dp[i][j] = min(
    findTourDistance(i + 1, j) + distance(i, i + 1),
    findTourDistance(i + 1, i) + distance(j, i + 1));

    return dp[i][j];
}

// Function to find the
// bitonic tour distance
void bitonicTSP(int N)
{
    // Initialize the dp array
    memset(dp, 0, sizeof(dp));

    // Base Case
    for (int j = 1; j < N - 1; j++)
        dp[N - 1][j] = distance(N - 1, N)
              + distance(j, N);

    // Print the answer
    printf("%.2f\n", findTourDistance(1, 1));
}

// Driver Code
int main()
{
    // Given Input
    int N = 3;
    a[1].x = 1, a[1].y = 1;
    a[2].x = 2, a[2].y = 3;
    a[3].x = 3, a[3].y = 1;

    // Function Call
    bitonicTSP(N);
}

2 代码格式


// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;// Size of the array a[]
const int mxN = 1005;// Structure to store the x and
// y coordinates of a point
struct Coordinates {double x, y;
} a[mxN];// Declare a 2-D dp array
float dp[mxN][mxN];// Function to calculate the
// distance between two points
// in a Euclidian plane
float distance(int i, int j)
{// Return the distancereturn sqrt((a[i].x - a[j].x) * (a[i].x - a[j].x)+ (a[i].y - a[j].y) * (a[i].y - a[j].y));
}// Utility recursive function to find
// the bitonic tour distance
float findTourDistance(int i, int j)
{// Memoizationif (dp[i][j] > 0)return dp[i][j];// Update dp[i][j]dp[i][j] = min(findTourDistance(i + 1, j) + distance(i, i + 1),findTourDistance(i + 1, i) + distance(j, i + 1));return dp[i][j];
}// Function to find the
// bitonic tour distance
void bitonicTSP(int N)
{// Initialize the dp arraymemset(dp, 0, sizeof(dp));// Base Casefor (int j = 1; j < N - 1; j++)dp[N - 1][j] = distance(N - 1, N)+ distance(j, N);// Print the answerprintf("%.2f\n", findTourDistance(1, 1));
}// Driver Code
int main()
{// Given Inputint N = 3;a[1].x = 1, a[1].y = 1;a[2].x = 2, a[2].y = 3;a[3].x = 3, a[3].y = 1;// Function CallbitonicTSP(N);
}

这篇关于C/C++,优化算法——双离子推销员问题(Bitonic Travelling Salesman Problem)的计算方法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/473171

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数