【黏菌优化算法】基于平衡黏菌优化算法求解单目标优化问题 (ESMA)含Matlab源码

2023-12-09 04:40

本文主要是介绍【黏菌优化算法】基于平衡黏菌优化算法求解单目标优化问题 (ESMA)含Matlab源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 简介

黏菌优化算法(Slime mould algorithm,SMA)由 Li等于 2020 年提出,其灵感来自于黏菌的扩散和觅食行为,属于元启发算法。具有收敛速度快,寻优能力强的特点。黏菌优化算法用数学模型模仿黏菌觅食行为和形态变化, SMA 包括三个阶段,分别为接近食物阶段、包围食物阶段和抓取食物阶段。

正在上传…重新上传取消

2 部分代码

% Equlibrium Slime Mould Algorithm (LSMA) %% Developed in MATLAB R2019b%_____________________________________________________________________________________________________clearvarsclose allclcdisp('The ESMA is tracking the problem');N=20; % 粘菌数Function_name='F1' % 测试功能的名称,可以从 F1 到 F23MaxIT=200; % 最大迭代次数[lb,ub,dim,fobj]=Get_Functions_details(Function_name); % Function detailsTimes=11; %您想要运行 ESMA 的独立次数display(['Number of independent runs: ', num2str(Times)]);for i=1:Times[Destination_fitness(i),bestPositions(i,:),Convergence_curve(i,:)]=ESMA(N,MaxIT,lb,ub,dim,fobj);display(['The optimal fitness of ESMA is: ', num2str(Destination_fitness(i))]);end[bestfitness,index]=min(Destination_fitness);disp('--------Best Fitness, Average Fitness, Standard Deviation and Best Solution--------');display(['The best fitness of ESMA is: ', num2str(bestfitness)]);display(['The average fitness of ESMA is: ', num2str(mean(Destination_fitness))]);display(['The standard deviation fitness of ESMA is: ', num2str(std(Destination_fitness))]);display(['The best location of ESMA is: ', num2str(bestPositions(index,:))]);figure('Position',[269   240   660   290])%Draw search spacesubplot(1,2,1);func_plot(Function_name);title('Parameter space')xlabel('x_1');ylabel('x_2');zlabel([Function_name,'( x_1 , x_2 )'])%Draw objective spacesubplot(1,2,2);semilogy(Convergence_curve(index,:),'LineWidth',1);xlabel('迭代');ylabel('最优值');legend('ESMA');box on;axis tight;grid off;

3 仿真结果

4 参考文献

[1]郭雨鑫,刘升,张磊,黄倩.精英反向与二次插值改进的黏菌算法[J/OL].计算机应用研究:1-7​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

这篇关于【黏菌优化算法】基于平衡黏菌优化算法求解单目标优化问题 (ESMA)含Matlab源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472508

相关文章

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组