图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list

本文主要是介绍图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文实现了有向图的邻接表表示,并且实现了从创建到销毁图的各种操作。

以及深度优先遍历,广度优先遍历,Dijkstra最短路径算法,Prim最小生成树算法,拓扑排序算法。

可结合我的另一篇文章(有向图,无向图的邻接矩阵表示)看。

PS: 等有时间了作详细的讲解。


#include <iostream>
#include <climits>
#include <sstream> 
#include <queue>
using namespace std;//const bool UNDIGRAPH = 1;struct EdgeNode//edge,the node of linked list  
{  int vtxNO;  int weight;  EdgeNode *next;  
};  struct VNode//vertex, the head of the linked list  
{  string vertexLabel; EdgeNode *first;  bool visited;//only for DFS,BFS,Dijkstraint distance; //only for Dijkstraint path;//only for Dijkstraint indegree; //only for topological sort
};  struct Graph  
{  VNode *vertexList;//the size of this array is equal to vertexes  int vertexes;  int edges;  
};  void BuildGraph(Graph *&graph, int n)
{if (graph == NULL){graph = new Graph;graph->vertexList = new VNode[n];graph->vertexes = n;graph->edges = 0;for (int i = 0; i < n; i++)  {  stringstream ss;  ss<<"v" << i+1;  ss >> graph->vertexList[i].vertexLabel;  graph->vertexList[i].path = -1;graph->vertexList[i].visited = false;graph->vertexList[i].first = NULL;graph->vertexList[i].indegree = 0;}}
}void MakeEmpty(Graph *&graph)
{if(graph == NULL)return;for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *pEdge = graph->vertexList[i].first;  while (pEdge!=NULL)  {  EdgeNode *tmp = pEdge;  pEdge = pEdge->next;  delete tmp;  }  }  delete graph;
}void AddEdge(Graph *graph,int v1, int v2, int weight)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first; if(p == NULL)  {  //can not be p = new EdgeNode;  graph->vertexList[v1].first = new EdgeNode;  graph->vertexList[v1].first->next = NULL;  graph->vertexList[v1].first->vtxNO = v2;  graph->vertexList[v1].first->weight = weight;  graph->edges++;graph->vertexList[v2].indegree++;return;}  while (p->next != NULL)//move to the last node  {  if(p->vtxNO == v2)//already exits. checking all nodes but the last one  return;  p = p->next;  }  if(p->vtxNO == v2)//already exits. checking the first or the last node  return;  EdgeNode *node = new EdgeNode;  node->next = NULL;  node->vtxNO = v2;  node->weight = weight;  p->next = node;//last node's next is the new node  graph->edges++;  graph->vertexList[v2].indegree++;
}void RemoveEdge(Graph *graph, int v1, int v2)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first;  if(p == NULL)//not found  return;  if(p->vtxNO == v2)//found,delete the first node  {  EdgeNode *tmp = p;//first  graph->vertexList[v1].first = p->next; //can not be p = p->next  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  while(p->next != NULL)  {  if(p->next->vtxNO == v2)//found  {  EdgeNode *tmp = p->next;  p = p->next->next;  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  p = p->next;  }  
}int GetIndegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  if(p->vtxNO == v)  {  degree++;  break;  }  p = p->next;  }  }  return degree;  
}int GetOutdegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  EdgeNode *p = graph->vertexList[v].first;  while(p != NULL)  {  p = p->next;  degree++;  }  return degree; 
}int GetDegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;return GetIndegree(graph,v) + GetOutdegree(graph,v);
}void PrintGraph(Graph *graph)
{if(graph == NULL)return;cout << "Vertex: " << graph->vertexes <<"\n";cout << "Edge: " << graph->edges << "\n";for (int i = 0; i < graph->vertexes; i++)  {  cout << i+1 << ": " << graph->vertexList[i].vertexLabel<<"->";  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  cout << graph->vertexList[p->vtxNO].vertexLabel << "(" << p->weight <<")->";  p = p->next;  }  cout << "\n";  }  cout << "\n";
}//depth first search (use stack or recursion)
//DFS is similar to preorder traversal of trees
void DFS(Graph *graph, int i)
{if (!graph->vertexList[i].visited){cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}EdgeNode *p = graph->vertexList[i].first;while (p != NULL){if(!graph->vertexList[p->vtxNO].visited)//notice!DFS(graph, p->vtxNO);p = p->next;}
}void BeginDFS(Graph *graph)
{if(graph == NULL) return;cout << "DFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;for (int i = 0; i < graph->vertexes; i++)DFS(graph,i);
}
//breadth first search(use queue)
//BFS is similar to leverorder traversal of trees
//all of the vertexes will be searched once no matter how the digraph is constructed
void BFS(Graph *graph)
{if(graph == NULL)return;cout << "BFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;queue<int> QVertex;for (int i = 0; i < graph->vertexes; i++){if (!graph->vertexList[i].visited){QVertex.push(i);cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}while(!QVertex.empty()){int vtxNO = QVertex.front();QVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){if (!graph->vertexList[p->vtxNO].visited){cout << graph->vertexList[p->vtxNO].vertexLabel << " ";graph->vertexList[p->vtxNO].visited = true;QVertex.push(p->vtxNO);}p = p->next;}}}cout << "\n";
}void TopologicalSort(Graph *graph)
{//if(UNDIGRAPH) return;if(graph == NULL) return;cout << "TopologicalSort"<<"\n";int counter = 0;queue <int> qVertex;for (int i = 0; i < graph->vertexes; i++){if(GetIndegree(graph,i) == 0)qVertex.push(i);}while (!qVertex.empty()){int vtxNO = qVertex.front();counter++;cout << graph->vertexList[vtxNO].vertexLabel;if(counter != graph->vertexes)cout << " > ";qVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){int vtxNo = p->vtxNO;/*EdgeNode *tmp = p;p = p->next;delete tmp;tmp = NULL;*/// although tmp is NULL,but p is not NULL,and the data pointed by p has been deletedp = p->next;//if (GetIndegree(graph,vtxNo) == 0)//error,in while(p != NULL),so use a variable indegree insteadif (--graph->vertexList[vtxNo].indegree == 0)qVertex.push(vtxNo);}}cout << "\n";
}void Dijkstra(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (graph->vertexList[minDisInx].distance + p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = graph->vertexList[minDisInx].distance + p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}
}//almost for undigraph
void Prim(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}}
int main()
{Graph *graph = NULL;BuildGraph(graph,7);PrintGraph(graph);//for simple test, 0 indexed/*AddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,1,3,1);*///for TopologicalSort//0 indexedAddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,0,3,1);AddEdge(graph,1,3,1);AddEdge(graph,1,4,1);AddEdge(graph,2,5,1);AddEdge(graph,3,2,1);AddEdge(graph,3,5,1);AddEdge(graph,3,6,1);AddEdge(graph,4,3,1);AddEdge(graph,4,6,1);AddEdge(graph,6,5,1);PrintGraph(graph);RemoveEdge(graph,6,5);AddEdge(graph,6,5,1);//for Dijkstra(shortest path),Prim(minimum spanning tree)//0 indexed/*AddEdge(graph,0,1,2);  AddEdge(graph,0,3,1);  AddEdge(graph,1,3,3);  AddEdge(graph,1,4,10);  AddEdge(graph,2,0,4);  AddEdge(graph,2,5,5);  AddEdge(graph,3,2,2);AddEdge(graph,3,4,2);AddEdge(graph,3,5,8);  AddEdge(graph,3,6,4);  AddEdge(graph,4,6,6);  AddEdge(graph,6,5,1);*/PrintGraph(graph);BeginDFS(graph);cout << "\n";BFS(graph);for (int i = 0; i < graph->vertexes; i++){cout << "\n";Dijkstra(graph,i);}Prim(graph,0);TopologicalSort(graph);MakeEmpty(graph);return 0;
}


这篇关于图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472262

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os