深度学习优化策略-4 基于Gate Mechanism的激活单元GTU、GLU

2023-12-09 00:20

本文主要是介绍深度学习优化策略-4 基于Gate Mechanism的激活单元GTU、GLU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


1、Sigmoid和Tanh激活函数及存在问题

    深度学习(神经网络)中最先被广泛使用的激活函数是Sigmoid函数和双曲正切激活函数,都是非线性的激活函数,两个激活函数的表达式如下:

sigmoid函数:      f(x)= 1 / (1+exp(−x))

双曲正切函数:       f(x)= tanh(x)

    激活函数的图形如图所示:

    Sigmoid和双曲正切激活函数有两个明显的缺点:

    1、存在饱和死区特性,梯度反向传播时,容易导致梯度爆炸(Gradient Explosion)和梯度消失(Gradient Vanish)问题。

    2、对于多层非线性变换嵌套操作的深度学习网络,关于参数W的梯度计算比较复杂,计算量大。

2、Relu系列激活函数

    为了解决上面两个问题,深度学习研究领域陆续提出了Relu(Rectified linear unit)及其变体Leaky Relu、Elu、pRelu、PRelu、RRelu等。借鉴LSTM的Gate Mechanism思想,基于Relu激活函数和Tanh激活函数,结合gate unit产生的GTU units、GLU units等激活单元。

    Relu激活函数的表达式为:f(x)=max(0,x)

    Relu激活函数及它一些变体的曲线如下图所示:

    关于Relu及其变体激活函数介绍的资料比较多,这里我就不赘述了。

3、基于Gate mechanism的GLU、GTU 单元

    介绍一下基于gate mechanism实现的,两个比较新颖的激活函数GTU和GLU。

    GTU(Gated Tanh Unit)的表达式为:

    f(X) = tanh(X*W+b) * O(X*V+c)

    GLU(Gated Liner Unit)的表达式为:

    f(X) = (X * W + b) * O(X * V + c)

    分析GTU和GLU的组成结构可以发现:

  Tanh激活单元:tanh(X*W+b),加上一个Sigmoid激活单元:O(X*V+c)构成的gate unit,就构成了GTU单元。

   Relu激活单元:(X * W + b),加上一个Sigmoid激活单元:O(X * V + c)构成的gate unit,就构成了GLU单元。

4、gate mechanism影响及各激活单元对比

    下图实验结果来源于论文《Language Modeling with Gated Convolutional Networks》 5.2节。

图1 Tanh、Relu、GTU和GLU激活单元性能对比

(1)、gate mechanism 影响

把GTU中的Sigmoid gate去掉的话,就是一个Tanh激活函数。因此,可以通过比较Tanh和GTU的实验效果,来对比Gate mechanism对模型性能的影响。通过图1中的左图可以发现,使用GTU的效果远远优于Tanh激活函数,可见,gate units有助于深度网络建模。

(2)、Tanh、GLU与Relu、GLU对比

Tanh激活函数和GTU都存在梯度消失的问题,因为即使是GTU,当units的激活处于饱和区时,输入单元激活单元:tanh(X*W+b)和gate单元:O(X * V + c)都会削弱梯度值。相反,GLU和Relu不存在这样的问题。GLU和Relu都拥有线性的通道,可以使梯度很容易通过激活的units,反向传播且不会减小。因此,采用GLU或Relu做为激活,训练时收敛速度更快。

(3)、Relu与GLU对比

Relu单元并没有完全抛弃GLU中的gate units,GLU可以看做是处于激活状态下的一种简化的Relu单元。对比Relu和GLU,通过图1右图可以大显,在相同的训练时间下,GLU单元可以获得比Relu更高的精度。

(4)GLU与GTU对比:

GTU存在tanh激活的非线性单元,GLU存在的线性单元,GLU中不存在类似于GTU中的梯度消失问题。通过对比可以发现,GLU获得比GTU更快的收敛速度,以及更高的准确率。

5、参考文献

[1] Conditional Image Generation with PixelCNN Decoders

[2] Language Modeling with Gated Convolutional Networks

更多深度学习在NLP方面应用的经典论文、实践经验和最新消息,欢迎关注微信公众号深度学习与NLPDeepLearning_NLP”或扫描二维码添加关注。


这篇关于深度学习优化策略-4 基于Gate Mechanism的激活单元GTU、GLU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471816

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份