GeoPandas初体验:它是什么,我用它展示一下shp矢量数据

2023-12-08 23:44

本文主要是介绍GeoPandas初体验:它是什么,我用它展示一下shp矢量数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GeoPandas 是一个开源的 Python 库,用于处理地理空间数据。它扩展了 Pandas 这个流行的 Python 数据操作库,增加了对地理数据类型和操作的支持。GeoPandas 结合了 Pandas、Matplotlib 和 Shapely 的功能,提供了一个易于使用且高效的工具,用于处理地理空间数据。

GeoPandas 是一个开源项目,用于处理地理空间 Python 中的数据更容易。GeoPandas 扩展了 pandas 使用的数据类型,以允许对几何类型进行空间运算。几何 操作由 Shapely 执行。Geopandas 进一步依赖 fiona 进行文件访问,并依赖 matplotlib 进行绘图。

  1. 官网地址:GeoPandas 0.dev+untagged — GeoPandas 0+untagged.50.g9a9f097.dirty 文档

  2. 在这里插入图片描述

  3. 成熟社区

  • GIS Stack Exchange

GIS Stack Exchange 是专注于地理信息系统的问答社区。您可以在这里找到与 GeoPandas 相关的问题和答案,涉及地理空间数据处理、地图绘制、坐标转换等方面。

网址为:https://gis.stackexchange.com/

  • GitHubStack Overflow

GeoPandas 的 GitHub 仓库是这个:https://github.com/geopandas/geopandas

这个仓库是 GeoPandas 项目的官方代码托管地点,您可以在这里找到 GeoPandas 的源代码、问题追踪、合并请求以及开发者讨论。如果您对贡献代码、报告问题或者了解 GeoPandas 的最新开发进展感兴趣,这个仓库将会是一个重要的参考资源。

在这个仓库中,您可以找到 GeoPandas 的代码库、开发文档、贡献指南等信息。同时,您也可以在 Issues 页面中报告 bug、提出功能请求,或者在 Pull Requests 页面中参与代码的贡献和讨论。

通过 GitHub 仓库,您可以与 GeoPandas 社区中的开发者和其他用户进行交流、分享想法,并参与到 GeoPandas 的持续发展和改进中。
在这里插入图片描述

1. GeoPandas的核心概念

GeoPandas 是一个用于处理地理空间数据的 Python 库,它构建在许多其他库的基础之上,主要是 Pandas、Shapely 和 Fiona。以下是 GeoPandas 中的一些核心概念:

  1. GeoSeries 和 GeoDataFrame: 这两个数据结构是 GeoPandas 的核心。它们分别是基于 Pandas 的 Series 和 DataFrame,但增加了对地理空间数据的支持。GeoSeries 是一维的数据结构,类似于 Pandas 的 Series,但其元素是几何对象。GeoDataFrame 类似于 Pandas 的 DataFrame,但至少包含一个列是 GeoSeries,表示几何数据。

  2. 几何对象: GeoPandas 支持几何对象,比如点(Point)、线(LineString)、多边形(Polygon)等。这些几何对象可以储存在 GeoSeries 中,并允许执行各种空间分析和操作。

  3. 地理空间数据的操作: GeoPandas 提供了各种地理空间数据操作,例如缓冲区分析、空间查询、几何对象的交集、并集等。

  4. 读取和写入地理空间数据: GeoPandas 支持读取和写入多种地理空间数据格式,如 ESRI Shapefile、GeoJSON、GeoPackage 等,以及与其他 GIS 软件兼容的格式。

  5. 地理空间操作函数: GeoPandas 结合了 Shapely 库的功能,可以进行一系列的空间操作,包括距离计算、几何对象的交叉判断、几何对象的缓冲区生成等。

  6. 地图绘制和可视化: GeoPandas 结合了 Matplotlib 的功能,可以直接从 GeoDataFrame 中绘制地图,显示地理空间数据的可视化结果。

这些概念构成了 GeoPandas 的基本构架和核心功能。借助这些特性,GeoPandas 提供了一个便捷而强大的工具,用于处理和分析地理空间数据,并能够与其他 Python 数据科学和地理信息系统 (GIS) 工具很好地整合。

2. 安装使用GeoPandas

在 Windows 上安装 GeoPandas 并在 Jupyter Notebook 中使用,您可以按照以下步骤操作:

步骤一:安装 Python

如果您尚未安装 Python,请从 Python 官网 下载并安装最新版本的 Python。在安装过程中,请确保勾选“Add Python to PATH”选项,以便在命令行中访问 Python。

步骤二:安装依赖工具

1. 安装 Visual C++ Build Tools

GeoPandas 和其依赖项中的部分库可能需要编译 C/C++ 扩展。在 Windows 上,您可能需要安装 Visual C++ Build Tools。您可以从 Visual Studio Build Tools 下载并安装适用于您系统的 Visual C++ Build Tools。

2. 安装 GDAL、Fiona、Rtree 和 Pyproj

打开命令提示符(Command Prompt)或 PowerShell,并执行以下命令来安装 GeoPandas 的一些依赖项:

pip install wheel
pip install GDAL Fiona Rtree Pyproj

步骤三:安装 GeoPandas 和 Jupyter Notebook

  1. 打开命令提示符(Command Prompt)或 PowerShell。

  2. 执行以下命令安装 GeoPandas 和 Jupyter Notebook:

pip install geopandas
pip install jupyterlab

步骤四:启动 Jupyter Notebook

  1. 在命令提示符(Command Prompt)或 PowerShell 中,导航到您想要工作的目录。

  2. 启动 Jupyter Notebook,输入以下命令并按 Enter:

jupyter notebook

这将在默认浏览器中打开 Jupyter Notebook,并允许您创建新的 Python Notebook。在 Notebook 中,您可以导入 GeoPandas 并开始使用它进行地理空间数据分析和操作。例如:

import geopandas as gpd# 如果没有报错,表示成功导入 GeoPandas

这些步骤将在 Windows 系统上帮助您安装 GeoPandas 并在 Jupyter Notebook 中使用它。如果遇到任何问题,请随时在这里咨询。

此处有坑

会出现本机电脑安装了python,而Jupyter Notebook中会自带一个Python,所以需要在Jupyter的Kernel中创建并切换

在这里插入图片描述

首先需要找到需要使用python主环境

C:\Python39\python.exe -m pip install ipykernelC:\Python39\python.exe -m ipykernel install --user --name myenv --display-name "Python 3.9 (myenv)"

3. 使用GeoPandas展示一下shp文件

3.1 简单展示一下

import geopandas as gpd# 替换为您的 Shapefile 文件路径
shapefile_path = r'D:\BaiduNetdiskDownload\北京市行政区划\北京市t.shp'
gdf = gpd.read_file(shapefile_path)# 显示加载的地理数据
gdf.plot()

在这里插入图片描述

3.2 展示稍大数据量的矢量shp数据

import geopandas as gpd
import timedef plotShapefile(shapefile_path):# 记录开始时间start_time = time.time()  gdf = gpd.read_file(shapefile_path)end_time = time.time()  # 记录结束时间# 计算执行时间(以秒为单位)execution_time = end_time - start_timeprint("read_file time: {:.4f} seconds".format(execution_time))start_time=end_timegdf.plot()end_time = time.time()  # 记录结束时间# 计算执行时间(以秒为单位)execution_time = end_time - start_timeprint("gdf.plot time: {:.4f} seconds".format(execution_time))plotShapefile(r'D:\BaiduNetdiskDownload\北京市行政区划\北京市t.shp')
plotShapefile(r'D:\BaiduNetdiskDownload\湖北省数据\矢量数据\第二种路网\湖北省_road.shp')

在这里插入图片描述

这篇关于GeoPandas初体验:它是什么,我用它展示一下shp矢量数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471714

相关文章

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑