GeoPandas初体验:它是什么,我用它展示一下shp矢量数据

2023-12-08 23:44

本文主要是介绍GeoPandas初体验:它是什么,我用它展示一下shp矢量数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GeoPandas 是一个开源的 Python 库,用于处理地理空间数据。它扩展了 Pandas 这个流行的 Python 数据操作库,增加了对地理数据类型和操作的支持。GeoPandas 结合了 Pandas、Matplotlib 和 Shapely 的功能,提供了一个易于使用且高效的工具,用于处理地理空间数据。

GeoPandas 是一个开源项目,用于处理地理空间 Python 中的数据更容易。GeoPandas 扩展了 pandas 使用的数据类型,以允许对几何类型进行空间运算。几何 操作由 Shapely 执行。Geopandas 进一步依赖 fiona 进行文件访问,并依赖 matplotlib 进行绘图。

  1. 官网地址:GeoPandas 0.dev+untagged — GeoPandas 0+untagged.50.g9a9f097.dirty 文档

  2. 在这里插入图片描述

  3. 成熟社区

  • GIS Stack Exchange

GIS Stack Exchange 是专注于地理信息系统的问答社区。您可以在这里找到与 GeoPandas 相关的问题和答案,涉及地理空间数据处理、地图绘制、坐标转换等方面。

网址为:https://gis.stackexchange.com/

  • GitHubStack Overflow

GeoPandas 的 GitHub 仓库是这个:https://github.com/geopandas/geopandas

这个仓库是 GeoPandas 项目的官方代码托管地点,您可以在这里找到 GeoPandas 的源代码、问题追踪、合并请求以及开发者讨论。如果您对贡献代码、报告问题或者了解 GeoPandas 的最新开发进展感兴趣,这个仓库将会是一个重要的参考资源。

在这个仓库中,您可以找到 GeoPandas 的代码库、开发文档、贡献指南等信息。同时,您也可以在 Issues 页面中报告 bug、提出功能请求,或者在 Pull Requests 页面中参与代码的贡献和讨论。

通过 GitHub 仓库,您可以与 GeoPandas 社区中的开发者和其他用户进行交流、分享想法,并参与到 GeoPandas 的持续发展和改进中。
在这里插入图片描述

1. GeoPandas的核心概念

GeoPandas 是一个用于处理地理空间数据的 Python 库,它构建在许多其他库的基础之上,主要是 Pandas、Shapely 和 Fiona。以下是 GeoPandas 中的一些核心概念:

  1. GeoSeries 和 GeoDataFrame: 这两个数据结构是 GeoPandas 的核心。它们分别是基于 Pandas 的 Series 和 DataFrame,但增加了对地理空间数据的支持。GeoSeries 是一维的数据结构,类似于 Pandas 的 Series,但其元素是几何对象。GeoDataFrame 类似于 Pandas 的 DataFrame,但至少包含一个列是 GeoSeries,表示几何数据。

  2. 几何对象: GeoPandas 支持几何对象,比如点(Point)、线(LineString)、多边形(Polygon)等。这些几何对象可以储存在 GeoSeries 中,并允许执行各种空间分析和操作。

  3. 地理空间数据的操作: GeoPandas 提供了各种地理空间数据操作,例如缓冲区分析、空间查询、几何对象的交集、并集等。

  4. 读取和写入地理空间数据: GeoPandas 支持读取和写入多种地理空间数据格式,如 ESRI Shapefile、GeoJSON、GeoPackage 等,以及与其他 GIS 软件兼容的格式。

  5. 地理空间操作函数: GeoPandas 结合了 Shapely 库的功能,可以进行一系列的空间操作,包括距离计算、几何对象的交叉判断、几何对象的缓冲区生成等。

  6. 地图绘制和可视化: GeoPandas 结合了 Matplotlib 的功能,可以直接从 GeoDataFrame 中绘制地图,显示地理空间数据的可视化结果。

这些概念构成了 GeoPandas 的基本构架和核心功能。借助这些特性,GeoPandas 提供了一个便捷而强大的工具,用于处理和分析地理空间数据,并能够与其他 Python 数据科学和地理信息系统 (GIS) 工具很好地整合。

2. 安装使用GeoPandas

在 Windows 上安装 GeoPandas 并在 Jupyter Notebook 中使用,您可以按照以下步骤操作:

步骤一:安装 Python

如果您尚未安装 Python,请从 Python 官网 下载并安装最新版本的 Python。在安装过程中,请确保勾选“Add Python to PATH”选项,以便在命令行中访问 Python。

步骤二:安装依赖工具

1. 安装 Visual C++ Build Tools

GeoPandas 和其依赖项中的部分库可能需要编译 C/C++ 扩展。在 Windows 上,您可能需要安装 Visual C++ Build Tools。您可以从 Visual Studio Build Tools 下载并安装适用于您系统的 Visual C++ Build Tools。

2. 安装 GDAL、Fiona、Rtree 和 Pyproj

打开命令提示符(Command Prompt)或 PowerShell,并执行以下命令来安装 GeoPandas 的一些依赖项:

pip install wheel
pip install GDAL Fiona Rtree Pyproj

步骤三:安装 GeoPandas 和 Jupyter Notebook

  1. 打开命令提示符(Command Prompt)或 PowerShell。

  2. 执行以下命令安装 GeoPandas 和 Jupyter Notebook:

pip install geopandas
pip install jupyterlab

步骤四:启动 Jupyter Notebook

  1. 在命令提示符(Command Prompt)或 PowerShell 中,导航到您想要工作的目录。

  2. 启动 Jupyter Notebook,输入以下命令并按 Enter:

jupyter notebook

这将在默认浏览器中打开 Jupyter Notebook,并允许您创建新的 Python Notebook。在 Notebook 中,您可以导入 GeoPandas 并开始使用它进行地理空间数据分析和操作。例如:

import geopandas as gpd# 如果没有报错,表示成功导入 GeoPandas

这些步骤将在 Windows 系统上帮助您安装 GeoPandas 并在 Jupyter Notebook 中使用它。如果遇到任何问题,请随时在这里咨询。

此处有坑

会出现本机电脑安装了python,而Jupyter Notebook中会自带一个Python,所以需要在Jupyter的Kernel中创建并切换

在这里插入图片描述

首先需要找到需要使用python主环境

C:\Python39\python.exe -m pip install ipykernelC:\Python39\python.exe -m ipykernel install --user --name myenv --display-name "Python 3.9 (myenv)"

3. 使用GeoPandas展示一下shp文件

3.1 简单展示一下

import geopandas as gpd# 替换为您的 Shapefile 文件路径
shapefile_path = r'D:\BaiduNetdiskDownload\北京市行政区划\北京市t.shp'
gdf = gpd.read_file(shapefile_path)# 显示加载的地理数据
gdf.plot()

在这里插入图片描述

3.2 展示稍大数据量的矢量shp数据

import geopandas as gpd
import timedef plotShapefile(shapefile_path):# 记录开始时间start_time = time.time()  gdf = gpd.read_file(shapefile_path)end_time = time.time()  # 记录结束时间# 计算执行时间(以秒为单位)execution_time = end_time - start_timeprint("read_file time: {:.4f} seconds".format(execution_time))start_time=end_timegdf.plot()end_time = time.time()  # 记录结束时间# 计算执行时间(以秒为单位)execution_time = end_time - start_timeprint("gdf.plot time: {:.4f} seconds".format(execution_time))plotShapefile(r'D:\BaiduNetdiskDownload\北京市行政区划\北京市t.shp')
plotShapefile(r'D:\BaiduNetdiskDownload\湖北省数据\矢量数据\第二种路网\湖北省_road.shp')

在这里插入图片描述

这篇关于GeoPandas初体验:它是什么,我用它展示一下shp矢量数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471714

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.