文献速递:多模态影像组学文献分享:生成一种多模态人工智能模型以区分甲状腺良性和恶性滤泡性肿瘤:概念验证研究

本文主要是介绍文献速递:多模态影像组学文献分享:生成一种多模态人工智能模型以区分甲状腺良性和恶性滤泡性肿瘤:概念验证研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文献速递:多模态影像组学文献分享:生成一种多模态人工智能模型以区分甲状腺良性和恶性滤泡性肿瘤:概念验证研究

文献速递介绍

近年来,人工智能(AI)领域日益被探索,作为一种增强传统医学诊断和预后方法的手段。机器学习(ML),AI的一个子领域,是一系列算法,任务是通过从数据集中提取有意义的特征和模式来创建预测或二元分类。当应用于医学图像时,ML有潜力揭示人工分析所遗漏的诊断特征,并已展现出与专家放射科医生相当乃至超越的预测能力。鉴于甲状腺结节在普通人群中的高发病率,加之超声解释中的主观性问题和观察者间的可变性,改善甲状腺超声图像的分类一直是AI研究的特别关注领域。

特别是在甲状腺疾病领域,ML方法主要集中在开发二元分类模型上,试图仅凭超声图像更准确地区分良性和恶性结节。然而,大多数先前的研究都包括了所有甲状腺癌,很少有专注于特定组织学亚型,如滤泡性癌,它们约占分化型甲状腺癌的5%到10%。

滤泡性癌与良性滤泡腺瘤仅凭人类对超声的解释无法区分,在没有明确的局部区域性或转移性疾病的情况下,需要在外科切除后对包膜或血管侵犯进行病理确认。因此,传统基于图像特征的ML分类模型在这一特定亚型的应用可能面临特别的挑战。

提高这些ML模型预测能力的方法,特别是在不常见的组织类型上,仍然是探索性追求的领域。结合多模态数据,而不是仅使用单一视觉数据类型(例如,超声图像或病理切片)或传统的临床病理数据,可能是一种实现更高准确性的方法。理论上,这种数据融合更好地模拟了临床决策实际过程,临床医生必须考虑来自多个来源的不同数据类型(例如,实验室值、影像学、患者病史和症状、生命体征的实时趋势),并开始应用于医学领域的不同领域。最近对多模态ML在健康环境中的应用的综述显示,与单模态模型相比,多个先前研究中展示了更好的预测能力。然而,多模态模型由于需要获取、处理和清洗大量数据,可能构建起来复杂且耗时,并且使用这种方法的当前研究报告了不同的技术。

鉴于特定组织学亚型ML模型数据的匮乏,我们寻求探索多模态ML方法的新颖性,其具体的二元分类任务是预测滤泡性癌与腺瘤。因此,这个概念验证研究的目的是开发一个多模态ML模型,任务是在接受甲状腺手术的研究人群中对滤泡性癌与腺瘤进行分类,并评估其与单一数据类型ML模型相比的预测准确性。作为一项探索性研究,我们广泛调查了所有术前和术后临床和影像学特征的相对重要性,这些特征可能有助于滤泡性癌与腺瘤的分类,以更好地了解哪些数据点在这一患者人群中最具有预测癌症的能力。

Title

题目

Generating a multimodal artificial intelligence model to differentiatebenign and malignant follicular neoplasms of the thyroid: A proof-ofconcept study

生成一种多模态人工智能模型以区分甲状腺良性和恶性滤泡性肿瘤:概念验证研究

Background

背景

Machine learning has been increasingly used to develop algorithms that can improve

medical diagnostics and prognostication and has shown promise in improving the classification of

thyroid ultrasound images. This proof-of-concept study aims to develop a multimodal machine-learning

model to classify follicular carcinoma from adenoma.

机器学习已越来越多地被用于开发算法,以提高医学诊断和预后的能力,并且在改善甲状腺超声波影像分类方面显示出潜力。这项概念验证研究旨在开发一种多模态机器学习模型,以区分滤泡性癌症和腺瘤。

Methods

方法

This is a retrospective study of patients with follicular adenoma or carcinoma at a single

institution between 2010 and 2022. Demographics, imaging, and perioperative variables were collected.

The region of interest was annotated on ultrasound and used to perform radiomics analysis. Imaging

features and clinical variables were then used to create a random forest classifier to predict malignancy.Leave-one-out cross-validation was conducted to evaluate classifier performance using the area underthe receiver operating characteristic curve.

这是一项回顾性研究,研究了2010年至2022年期间在单一机构接受治疗的滤泡性腺瘤或癌症患者。收集了人口统计学、影像学和围手术期变量。在超声波上标注了感兴趣区域,并用于进行放射组学分析。然后使用影像特征和临床变量创建随机森林分类器以预测恶性肿瘤。使用接收者操作特征曲线下面积进行留一交叉验证以评估分类器性能。

Results

结果

Patients with follicular adenomas (n ¼ 7) and carcinomas (n ¼ 11) with complete imaging and

perioperative data were included. A total of 910 features were extracted from each image. The t

distributed stochastic neighbor embedding method reduced the dimension to 2 primary represented

components. The random forest classifier achieved an area under the receiver operating characteristic

curve of 0.76 (clinical only), 0.29 (image only), and 0.79 (multimodal data).Conclusion: Our multimodal machine learning model demonstrates promising results in classifyingfollicular carcinoma from adenoma. This approach can potentially be applied in future studies to generatemodels for preoperative differentiation of follicular thyroid neoplasms.

包括了有完整影像和围手术期数据的滤泡性腺瘤(n = 7)和癌症(n = 11)患者。每个影像中提取了910个特征。t分布的随机邻居嵌入方法将维度降至2个主要代表性组成部分。随机森林分类器在接收者操作特征曲线下面积达到0.76(仅临床),0.29(仅影像),和0.79(多模态数据)。结论:我们的多模态机器学习模型在区分滤泡性癌症和腺瘤方面显示出有希望的结果。这种方法未来可以应用于生成用于术前区分滤泡性甲状腺肿瘤的模型的研究。

Figure

图片

Figure 1. Two examples of annotated ultrasound imagesd(A) adenoma; (B) carcinoma. Ultrasound images were cross-referenced with pathology reports to identifynodule of interest in each patient. All images that had nodule in view were manuallyannotated as shown to indicate region of interest ROI.

图1. 两个标注过的超声波影像示例(A)腺瘤;(B)癌症。超声波影像与病理报告进行了交叉参考,以确定每个患者感兴趣的结节。所有展示结节的影像均已手动标注,如图所示,以指示感兴趣区域(ROI)。

图片

Figure 2. Receiver operating characteristic curves of clinical only, image only, andmultimodal model performance are shown. The area under the curve values demonstrate the improved performance of the multimodal model (0.792) in comparison withthe clinical only model (0.759) and image only model (0.260). AUC, area under thecurve.

图2. 仅临床、仅影像和多模态模型性能的接收者操作特征曲线展示如下。曲线下面积值显示了多模态模型(0.792)相比于仅临床模型(0.759)和仅影像模型(0.260)的性能提升。AUC,曲线下面积。

图片

Figure 3. This graph displays feature importance score based on the clinical random forest classifier model, with size of nodule on pathology showing highest importance scoreamong the included clinical variables. BMI, body mass index; US, ultrasonography

图3. 该图展示了基于临床随机森林分类器模型的特征重要性评分,其中病理学上结节的大小显示为最高重要性评分在包括的临床变量中。BMI,身体质量指数;US,超声波检查。

Table

图片

TableIDemographic,preoperative,andoperative/postoperative clinical variables for patients in the 2 cohorts

表I 两组患者的人口统计学、术前和术中/术后临床变量

图片

Table IISummary of sensitivity, specificity, NPV, and PPV of the clinical only, image only, and multimodal models

zx-1701917912981)]

Table IISummary of sensitivity, specificity, NPV, and PPV of the clinical only, image only, and multimodal models

表II 仅临床、仅影像和多模态模型的灵敏度、特异性、NPV和PPV总结

这篇关于文献速递:多模态影像组学文献分享:生成一种多模态人工智能模型以区分甲状腺良性和恶性滤泡性肿瘤:概念验证研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470750

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n