随机森林回归模型,SHAP库可视化

2023-12-08 14:52

本文主要是介绍随机森林回归模型,SHAP库可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随机森林回归模型

创建一个随机森林回归模型,训练模型,然后使用SHAP库解释模型的预测结果,并将结果可视化。

具体步骤如下:

  • 首先,代码导入了所需的库,包括matplotlib、shap、numpy和sklearn.ensemble。matplotlib库用于数据可视化,shap库用于解释机器学习模型的预测结果,numpy库用于进行数值计算和数组操作,sklearn.ensemble库中的RandomForestRegressor类用于创建随机森林回归模型。

  • 然后,代码设置了matplotlib的全局参数,将字体族设置为’PingFang HK’。这将影响后续绘图的字体样式。

  • 接下来,代码生成了一个形状为(100, 5)的随机数组作为模型的输入数据,并创建了一个随机森林回归模型。模型的构造函数的参数n_estimators指定了随机森林中决策树的数量。

  • 然后,代码使用输入数据和随机生成的目标值对模型进行训练。

  • 接下来,代码创建了一个shap.TreeExplainer对象用于解释模型的预测结果,并计算了输入数据的SHAP值。SHAP值是一种用于解释模型预测结果的方法。

  • 然后,代码使用shap.summary_plot函数生成了一个SHAP值的汇总图。这个图形显示了每个特征对预测结果的影响程度。

  • 接着,代码获取了当前图形的颜色条轴对象,并设置了其刻度标签为[‘低’, ‘高’],字体大小为15。颜色条轴用于显示图形中不同颜色对应的数值范围。

  • 最后,代码将当前图形保存为文件,文件名为’shap_summary_plot.png’。

使用随机森林回归模型进行预测,并使用SHAP库解释预测结果的过程。具体代码如下所示:

import matplotlib
matplotlib.use('Agg')  # 使用Agg后端import shap  #
import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import RandomForestRegressorplt.rcParams['font.family'] = ['PingFang HK']X = np.random.rand(100, 5)
model = RandomForestRegressor(n_estimators=100)model.fit(X, np.random.rand(100))explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)summary_plot = shap.summary_plot(shap_values, X, show=False)colorbar_axes = plt.gcf().get_axes()[-1]  # 获取当前图形的颜色条轴对象
colorbar_axes.set_yticklabels(['低', '高'],size=15)  # 设置颜色条轴的刻度标签, 设置字体大小# 将图保存到文件(例如PNG)
plt.savefig('shap_summary_plot.png')

这篇关于随机森林回归模型,SHAP库可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470270

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll