使用Python实现轮盘赌选择法Roulette Wheel Selection Method in Python

2023-12-08 04:04

本文主要是介绍使用Python实现轮盘赌选择法Roulette Wheel Selection Method in Python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

        最近在手写遗传算法,想尝试解决一些优化问题。然而,在编码的过程中,自己发现了很多都不懂的问题。比如,交叉的操作,有单点交叉、两点交叉和多点交叉,具体选哪一种会更好呢?未知。还有交叉的概率,以及变异的概率,取多少才算合理呢?未知。最后就是轮盘赌选择法,在实现的时候,也有一点小疑惑,就是:通过Python的random没办法直接使用choice、choices或sample进行选择。所以,只好通过手动的方式写一个了。

二、轮盘赌选择法/Roulette Wheel Selection Method

        轮盘赌选择法,即Roulette Wheel Selection Method,又称为Fitness Proportionate Selection Method。常用于遗传算法染色体的选择。从选择的个数来看,如果只是一个,那么很好实现。但如果是从多个选择之中选择一个,那么就稍微复杂一些了。

        想象有一个轮盘,现在我们将它分割成m个部分,而这里的m代表我们总体中染色体的个数。每条染色体在轮盘上占有的区域面积将根据适应度分数成比例表达出来。例如m=4,而各条染色体的适应度分数分别为28、23、12、34。那么,轮盘的形状如下:

        假设有一个固定的指针固定在圆盘周长上的某一点,轮盘开始旋转,那么当旋转停止时,就能够确定指针停留在哪个区域,并根据此区域能够选择出一个染色体。例如,

        这样,第一个染色体便被选了出来,而且它被选中的概率是35%(34/(28+23+12+34))。此时如果要选出第二个染色体,就拥有两种实现方式了:

        ①轮盘中不删除chromosome4,如果通过旋转随机停下选出来的还是chromosome4,就重新选择,直到选出一个染色体不是chromosome4为止。

        ②轮盘中删除chromosome4,然后按照下面的轮盘进行选择:

        显然,在第二种实现方法中,各染色体被选中的概率已经发生了变化。而且,第一种实现方法存在一个比较明显的缺点,就是:有可能一直都选择同一个染色体,尽管选择的尝试越久、概率越低,这导致选择的效率下降。第一种实现方式还有一个缺点是,选择到两个不同的染色体的概率是不可计算的,因为轮盘选择的结果拥有无数个(例如,每次旋转都被选中相同的chromosome4,导致一个死循环并不断做轮盘选择);而第二种的概率是可以被计算,因为每种选择的结果确定(例如,chromosome4-chromosome1、chromosome4-chromosome2或chromosome4-chromosome3)。

        因此,这里推荐使用第二种实现方式实现轮盘赌选择法。

三、基于Python的实现方式

        编程思想很简单,大概如下。生成一个[0,total_fitness)的随机数R

        如果R≤28,则选择chromosome1;

        如果28<R≤28+23,则选择chromosome2;

        如果28+23<R≤28+23+12,则选择chromosome3;

        如果28+23+12<R≤28+23+12+34,则选择chromosome4。

        当需要选择第二个染色体时,就从list中进行删除,当然fitness所对应的list也需要进行删除。

        实现方式为:

import copy
import random# function: achieve the roulette wheel selection method
# population_list: the list of optional chromosomes
# fitness_list: the corresponding fitness of chromosomes
# num_selection: the number of chromosome selection
def rw_selection(chromosome_list, fitness_list, num_selection):# copy a duplicate of the populationcp_chromosome_list = copy.deepcopy(chromosome_list)cp_fitness_list = copy.deepcopy(fitness_list)# define a list for save the selected chromosomesselected_chromosome_list = []# select m chromosomes from cp_chromosome_listfor _ in range(num_selection):# calculate the current sum of chromosome fitnesstotal_fitness = sum(cp_fitness_list)# judge which chromosome is selectedrandom_value = random.uniform(0, total_fitness)cumulative_fitness = 0for i, chromosome in enumerate(cp_chromosome_list):cumulative_fitness += cp_fitness_list[i]if cumulative_fitness >= random_value:# select a chromosomeselected_chromosome_list.append(chromosome)# remove the corresponding chromosome and fitnesscp_chromosome_list.pop(i)cp_fitness_list.pop(i)break# return the selection resultreturn selected_chromosome_list# enter of the program
if __name__ == '__main__':p = ['chromosome1', 'chromosome2', 'chromosome3', 'chromosome4']f = [28, 23, 12, 34]m = 2for _ in range(10):selected_p = rw_selection(p, f, m)print(selected_p)

四、运行结果和讨论

['chromosome3', 'chromosome4']
['chromosome1', 'chromosome2']
['chromosome2', 'chromosome1']
['chromosome3', 'chromosome1']
['chromosome1', 'chromosome2']
['chromosome1', 'chromosome3']
['chromosome4', 'chromosome1']
['chromosome4', 'chromosome2']
['chromosome3', 'chromosome4']
['chromosome4', 'chromosome1']

Process finished with exit code 0

        从运行的结果来看,chromosome4和chromosome1被优先选择的概率较高,因为chromosome4被选择的次数为5/20,而chromosome1被选择的次数为7/20。另外,chromosome2被选择的次数为4/20,chromosome3被选择的次数为4/20。基本上符合fitness的分布,但由于试验次数太少,chromosome4被选择的次数要少于chromosome1。

五、总结

        其实感觉这篇博客的意义不是很大,但是怕自己以后还遇到这个小问题,所以,还是记录一下比较好。如果博客中出现一些问题,还请广大网友批评指正。

六、参考资料

        1. 遗传算法

        2. Fitness Proportionate Selection

        3. what is roulette wheel selection

这篇关于使用Python实现轮盘赌选择法Roulette Wheel Selection Method in Python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/468476

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi