《opencv实用探索·十一》opencv之Prewitt算子边缘检测,Roberts算子边缘检测和Sobel算子边缘检测

2023-12-06 22:28

本文主要是介绍《opencv实用探索·十一》opencv之Prewitt算子边缘检测,Roberts算子边缘检测和Sobel算子边缘检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言

边缘检测:
图像边缘检测是指在图像中寻找灰度、颜色、纹理等变化比较剧烈的区域,它们可能代表着物体之间的边界或物体内部的特征。边缘检测是图像处理中的一项基本操作,可以用于人脸识别、物体识别、图像分割等多个领域。

边缘检测实质上是计算当前点和周围点灰度的差别。

图像边缘检测流程主要分为以下几个步骤:
(1)读取待处理图像;
(1)图像滤波,例如使用高斯滤波器,平滑图像,去除噪声;
(2)计算图像中每个像素点的梯度强度和方向;
(3)应用非极大值抑制(Non-Maximum Suooression),保留梯度方向上的局部最大值,抑制非边缘点,消除边缘检测带来的杂散响应;
(4)应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘,即将梯度幅值映射到两个阈值,根据梯度值高于高阈值或在高低阈值之间的情况,将像素标记为强边缘、弱边缘或非边缘。
(5)边缘连接,通过连接相邻的强边缘像素和与之相连的弱边缘像素,形成最终的边缘图像;
(6)显示结果。

在介绍各种边缘检测算子之前先简单阐述下怎么寻找边缘。

下面左图是一张黑白相间的图,右图是左图的每个像素的灰度值
在这里插入图片描述
我们设定一个卷积核如下(关于卷积的介绍请看之前的文章):
在这里插入图片描述
原图在通过卷积核进行卷积计算后得到的图像如下:
可以看到原图在卷积运算后黑色向白色突变的边缘被很好的保留了下来,因此可以通过这个卷积核找到图像中垂直的边缘。
在这里插入图片描述
同理,如果我们用下面的卷积核也可以找到图像中水平的边缘。
在这里插入图片描述
卷积运算后:
在这里插入图片描述

2、Prewitt算子边缘检测
如果我们把上面两个卷积核组合起来再对图像进行卷积便可以同时找到图像中水平和垂直的边缘,这种卷积核就是prewitt算子。
在这里插入图片描述

标准的 Prewitt 边缘检测算子由以下两个卷积核组成。
在这里插入图片描述
下面是用prewitt算子进行边缘检测的案例:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>using namespace cv;int main() {// 读取图像Mat image = imread("your_image.jpg", IMREAD_GRAYSCALE);// 定义Prewitt算子Mat prewitt_x = (Mat_<float>(3, 3) << -1, 0, 1, -1, 0, 1, -1, 0, 1);Mat prewitt_y = (Mat_<float>(3, 3) << -1, -1, -1, 0, 0, 0, 1, 1, 1);// 对图像应用Prewitt算子Mat edges_x, edges_y;filter2D(image, edges_x, CV_64F, prewitt_x);filter2D(image, edges_y, CV_64F, prewitt_y);// 计算梯度幅值和方向Mat gradient_magnitude, gradient_direction;magnitude(edges_x, edges_y, gradient_magnitude);phase(edges_x, edges_y, gradient_direction, true);// 归一化梯度幅值cv::normalize(gradient_magnitude, gradient_magnitude, 0, 1, cv::NORM_MINMAX);// 显示结果imshow("Original Image", image);  //原灰度图imshow("Gradient Magnitude", gradient_magnitude);  //prewitt算子边缘检测图waitKey(0);destroyAllWindows();return 0;
}

代码解读:
(1)在代码中我们先分别定义一个水平方向和垂直方向的prewitt算子edges_x和edges_y
(2)filter2D是对图像进行卷积操作,即获取prewitt算子与原图像卷积后的图像edges_x和edges_y
(3)magnitude 函数的主要用途是计算两个输入数组的逐元素平方和的平方根。在图像处理中,常常用于计算图像中每个像素点的梯度幅值。相位(Phase)在图像处理中通常指的是梯度的方向(边缘方向)。在梯度计算中,梯度向量的方向表示图像在该点上灰度变化最快的方向。在梯度计算中,通常使用 magnitude 函数计算梯度的幅值,使用 phase 函数计算梯度的方向。这两个信息一起构成了梯度向量,提供了有关图像局部变化的重要信息。
(4)最后归一化梯度幅值图像,因为64位图像显示范围为0-1。

最后效果如下(左边是原灰度图,右边是边缘检测出的图像):
在这里插入图片描述

3、Roberts算子
常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

下图左边为水平方向Roberts算子,也称正对角算子。右边为垂直方向Roberts算子,也称斜对角算子。
在这里插入图片描述
下面是Roberts算子的使用案例:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>int main() {// 生成一个简单的图像cv::Mat image = cv::Mat::zeros(100, 100, CV_8U);cv::rectangle(image, cv::Rect(20, 20, 60, 60), cv::Scalar(255), cv::FILLED);// 定义Sobel算子cv::Mat sobel_x = (cv::Mat_<float>(3, 3) << -1, 0, 1, -2, 0, 2, -1, 0, 1);cv::Mat sobel_y = (cv::Mat_<float>(3, 3) << -1, -2, -1, 0, 0, 0, 1, 2, 1);// 应用Sobel算子cv::Mat edges_x, edges_y;cv::filter2D(image, edges_x, CV_64F, sobel_x);cv::filter2D(image, edges_y, CV_64F, sobel_y);// 计算梯度幅值和方向cv::Mat gradient_magnitude, gradient_direction;cv::magnitude(edges_x, edges_y, gradient_magnitude);cv::phase(edges_x, edges_y, gradient_direction, true);  // true 表示计算角度的弧度值// 归一化梯度方向到[0, 1]范围cv::normalize(gradient_direction, gradient_direction, 0, 1, cv::NORM_MINMAX);// 显示结果cv::imshow("Original Image", image);cv::imshow("Gradient Magnitude", gradient_magnitude);cv::imshow("Gradient Direction", gradient_direction);cv::waitKey(0);cv::destroyAllWindows();return 0;
}

最后效果如下(左边是原灰度图,右边是边缘检测出的图像):
在这里插入图片描述

4、Sobel算子边缘检测
Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓。但Sobel算子并不是基于图像灰度进行处理的,因为Sobel算子并没有严格地模拟人的视觉生理特性,因此图像轮廓的提取有时并不能让人满意。当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。

它的水平和垂直方向的卷积核如下:
在这里插入图片描述
接口说明:

void cv::Sobel(InputArray src,OutputArray dst,int ddepth,int dx,int dy,int ksize = 3,double scale = 1,double delta = 0,int borderType = cv::BORDER_DEFAULT
);

src: 输入图像。可以是单通道(灰度图)或多通道图像。
dst: 输出图像,梯度的计算结果将存储在这里。
ddepth: 输出图像的深度,通常使用 CV_64F 或 CV_32F 表示。
dx: x方向上的导数阶数,设为1表示在水平方向上进行操作。
dy: y方向上的导数阶数,设为1表示在垂直方向上进行操作。
ksize: Sobel核的大小。默认为 3,表示一个 3x3 的核。通常使用奇数值。
scale: 可选的比例因子,用于调整梯度的幅值,也表示对比度。
delta: 可选的偏移值,用于调整输出图像的亮度。
borderType: 边界处理类型,可以使用 cv::BORDER_DEFAULT 或其他合适的边界处理标志。

Sobel算子边缘检测案例:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>int main() {// 读取图像cv::Mat image = cv::imread("your_image.jpg", cv::IMREAD_GRAYSCALE);if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 应用Sobel算子cv::Mat edges_x, edges_y;cv::Sobel(image, edges_x, CV_64F, 1, 0, 3); // 1表示在水平方向上进行操作cv::Sobel(image, edges_y, CV_64F, 0, 1, 3); // 1表示在垂直方向上进行操作// 计算梯度幅值cv::Mat gradient_magnitude;cv::magnitude(edges_x, edges_y, gradient_magnitude);// 归一化梯度方向到[0, 1]范围cv::normalize(gradient_magnitude, gradient_magnitude, 0, 1, cv::NORM_MINMAX);// 显示结果cv::imshow("Original Image", image);cv::imshow("Sobel Edges X", edges_x);cv::imshow("Sobel Edges Y", edges_y);cv::imshow("Gradient Magnitude", gradient_magnitude);cv::waitKey(0);cv::destroyAllWindows();return 0;
}

在这里插入图片描述

在这里插入图片描述

这篇关于《opencv实用探索·十一》opencv之Prewitt算子边缘检测,Roberts算子边缘检测和Sobel算子边缘检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/463562

相关文章

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时