ECCV 2022|Snap东北大学提出R2L:用数据蒸馏加速NeRF

2023-12-05 13:50

本文主要是介绍ECCV 2022|Snap东北大学提出R2L:用数据蒸馏加速NeRF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—> CV 微信技术交流群

转载自:机器之心 | 作者:Huan Wang

神经辐射场 (Neural Radiance Field, or NeRF) [Mildenhall et al., ECCV, 2020] 开启了用神经网络表征三维场景的新范式。NeRF 这两年在学术界和工业界都很火热, 但 NeRF 一个比较大的缺点是, 渲染速度慢。虽然 NeRF 用的神经网络 (11 层的 MLP) 本身很小, 但是渲染一个像素需要采集一条光线上的很多点(上百个), 这导致渲染一张图的计算量非常大, 如下图所示: 用 PyTorch 在单张 NVIDIA V100 显卡测试, 渲染 400x400 的图片就需要 6.7s 的时间, 这显然不利于 NeRF 在业界落地 (例如各种 AR/VR 设备, meta universe 等)。

4e152d9beff375411c191f59772b3001.png

学术界已有不少研究工作来加速 NeRF。比较流行的一种方式是, 给定训练好的 NeRF, 采用更高效的数据结构进行存储, 如 Sparse Voxel Octree [Yu et al., ICCV, 2021]. 尽管加速很可观 (如 [Yu et al., ICCV, 2021] 实现了 3000x 的渲染加速), 但这种数据结构也破坏了 NeRF 作为场景表征存储小的优点。譬如, 原始 NeRF 网络仅仅 2.4MB 大小就可以存储一个场景, 而采用 Sparse Voxel Octree 则需要 1.93GB [Yu et al., ICCV, 2021], 这显然难以在端上应用。

因此, 如何加速 NeRF 渲染并维持其存储小的优点 (简言之: 小且快), 仍然是当前的研究热点, 也是本文的动因。

6517be3f28fbbb5c6bebe95731ae0f24.png

  • Arxiv: https://arxiv.org/abs/2203.17261

  • Code: https://github.com/snap-research/R2L

  • Webpage: https://snap-research.github.io/R2L/

核心方法

我们所提出的核心方法从整体范式上来说非常简单: 通过数据蒸馏将神经辐射场 (NeRF) 转化为神经光场(Neural Light Field, or NeLF) -- 从 NeRF 到 NeLF, 所以我们把方法命名为 R2L。

NeLF 与 NeRF 一样, 都可以作为一个场景的表征. 不同的是:

  • NeRF 的输入是场景中的一个点 (该点的坐标 + 该点所在视线的方向), 输出是该点的 RGB 和不透明度。NeRF 网络的输出是中间结果, 并不是图片上的 RGB 值. 要想得到一个像素的 RGB 值, 需要对该像素对应光线上的很多点进行积分 (即 Alpha Compositing)。

  • 而 NeLF 的输入是一条光线, 输出直接是该光线对应图片上像素值, 不需要 Alpha Compositing 这一步。

对于 Novel View Synthesis 这个任务来说, NeLF 的优势很明显: 速度快! 要得到一个像素的 RGB 只需要跑一次网络, 而 NeRF 则需要跑上百次。

ef9c3722d84a177925bd66c9fdb380e0.png

但它的缺点也很明显, 主要有两个缺点: 

(1) NeLF 网络要拟合的目标函数比 NeRF 更难。这一点可以这么理解: 在一张图片上相邻两个像素的 RGB 可能突变 (因为遮挡), 而相邻两个像素的光线方向其实差别很小, 这就意味着, 这个函数的输入稍微变化一点, 输出可能剧变, 这种函数的不连续性强, 复杂度高. 相比之下, NeRF 表达的函数是空间中的点, 空间中的点由于物理世界的连续性, 相邻位置上 RGB 剧变的可能性小, 所以函数相对简单。

(2) 同样一堆图片, 用来训练 NeLF 的话, 样本量会大幅降低. 一张图片, 长宽为 H, W, 用来训练 NeLF 的话样本量就是 H*W, 而训练 NeRF 样本量是 H*W*K (K 是 NeRF 中的一条光线上的采样点个数, 在 NeRF 原文中 K=256). 所以, 从 NeRF 到 NeLF 训练样本量会变为原来的 1/K, 这是很大的缩减。

神经网络有效, 通常需要有大量的训练数据。从 NeRF 变为 NeLF, 一方面要拟合的目标函数变复杂了, 同时样本量却减小了, 无疑雪上加霜. 如何解决这些问题呢?

为了解决上述问题(1), 我们需要用一个更深的网络来表征更复杂的函数, 所以在我们的文章中提出了一个 88 层的深度残差 MLP (deep residual MLP), 网络结构如下:

b78cd74744a3ec3ad992f68efd1e07ce.png

这样的深层网络在之前 NeRF 相关的工作没有出现过 (之前的 NeRF 相关工作大多继承了原始 NeRF 文章中的网络结构, 小修小补)。为了能让它训练起来, 我们引入了残差结构的设计。这一点跟 ResNet 的思想一样, 本身并没有更多的创新, 但把这一点引入到 NeRF/NeLF 中, 据我们所知, 本文是第一篇工作。残差结构的引入很有必要, 因为深度网络没有残差结构基本训练不起来, 这一点在文中的消融实验中也得到了证实。

另一个值得注意的创新点是关于如何表征一条光线。理论上说, 一条光线用一个方向向量就可以确定, 但如果真的只用方向向量去表征, 就会出现上面说的 “输入很接近, 输出却可能剧变” 的情况, 这就无疑会给 NeLF 网络的学习带来困难。为了使得 NeLF 网络要学习的函数更容易一些, 我们需要增强输入的差别.

具体来说, 我们采用一条光线上采样的多个点的坐标 (如下图所示), 将其串联(concat) 起来成一个向量, 以此作为该光线的表征, 作为我们 NeLF 网络的输入。

8c8a6ce305af9528eed800ea66ed65da.png

这种表征非常简单直接, 同时也很有效。在文中, 我们也展示了它比之前的 NeLF 工作中用到的其他表征 (例如 Plucker 坐标 [Sitzmann et al, NeurIPS, 2021]) 要更为有效。

为了解决上述问题(2), 我们使用了一个预训练好的 NeRF 模型来产生大量伪数据 (pseudo data)。具体来说, 当 NeRF 对一个场景学习完之后, 给定任意一个角度 (ray direction), NeRF 都能返回这个角度下的图片, 我们就把这些图片收集起来, 形成了很多 (origin, direction, RGB) triplets。这些 triplets 就是训练我们模型的数据, loss 函数是 mean squared error (MSE), 如下所示:

6d516403a46d7deaf5d9403ea028bc03.png

在我们的实验中, 我们收集了 10k 张图片, 是原始数据集 (大概 100 张图片) 的 100 倍, 这些数据确保了有充足的样本去训练 NeLF。文中的消融实验也表明, 大量伪数据对性能至关重要 (6.9dB PSNR 提升)!

值得一提的是, 如果仅仅是用伪数据训练, 我们的模型最优也只能复制 teacher NeRF, 无法超越它。为了能超越, 我们在原始图片上再微调 (Finetune) 一下模型。这个操作被证明有非常显著的效果, 使得我们的模型可以显著超越 teacher NeRF。

实验效果

总的来说, 我们的模型在 NeRF Synthetic 数据集 (图片尺寸 400x400) 上实现了将近 30x 的加速, 并把 PSNR 大幅提升了 1.4dB, 比同类其他方法更加高效。

33bbe9eaf812511496d3ccd7de53423e.png

视觉效果图对比如下, 可以看到, 相比于 NeRF, 我们的模型 (Ours-2, 即在原始数据上微调后的模型)有肉眼可见的提升, 且计算量仅仅是 NeRF 的 1/26。

f20d12b8fbc00a4624f3b098bcbe5f51.png

更多结果请参考我们的文章。代码已经开源: https://github.com/snap-research/R2L, 欢迎尝试!

总结与未来工作

本文提出了一种全新的数据蒸馏方法来加速 NeRF: 我们使用训练好的 NeRF 模型产生伪数据, 来训练提出的深度残差 NeLF 网络。该 NeLF 网络可以达到超过 NeRF 的渲染质量, 且实现将近 30x 加速, 并维持了存储小的优点。

未来工作方向: (1) 从 NeRF 中可以得到深度信息, 目前我们还没提供从 NeLF 网络中得到深度信息的方法, 这是不错的探索方向。(2) 如何用更少, 更高质量的伪数据 (譬如进行数据筛选) 来加速 NeLF 的训练也非常值得探索。

点击进入—> CV 微信技术交流群

 

CVPR 2022论文和代码下载

后台回复:CVPR2022,即可下载CVPR 2022论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

NeRF交流群成立
扫描下方二维码,或者添加微信:CVer6666,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如NeRF+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群▲扫码或加微信: CVer6666,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!▲扫码进群
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看

这篇关于ECCV 2022|Snap东北大学提出R2L:用数据蒸馏加速NeRF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457832

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE