本文主要是介绍《动手学深度学习》task2_2 语言模型与数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 语言模型
- 语言模型
- n元语法
- 语言模型数据集
- 读取数据集
- 建立字符索引
- 时序数据的采样
- 随机采样
- 相邻采样
语言模型
一段自然语言文本可以看作是一个离散时间序列,给定一个长度为 T T T的词的序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,…,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
P ( w 1 , w 2 , … , w T ) . P(w_1, w_2, \ldots, w_T). P(w1,w2,…,wT).
本节我们介绍基于统计的语言模型,主要是 n n n元语法( n n n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。
语言模型
假设序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,…,wT中的每个词是依次生成的,我们有
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ P(w_1, w_2, \l…
例如,一段含有4个词的文本序列的概率
P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 1 , w 2 , w 3 ) . P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3). P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w1,w2,w3).
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如, w 1 w_1 w1的概率可以计算为:
P ^ ( w 1 ) = n ( w 1 ) n \hat P(w_1) = \frac{n(w_1)}{n} P^(w1)=nn(w1)
其中 n ( w 1 ) n(w_1) n(w1)为语料库中以 w 1 w_1 w1作为第一个词的文本的数量, n n n为语料库中文本的总数量。
类似的,给定 w 1 w_1 w1情况下, w 2 w_2 w2的条件概率可以计算为:
P ^ ( w 2 ∣ w 1 ) = n ( w 1 , w 2 ) n ( w 1 ) \hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)} P^(w2∣w1)=n(w1)n(w1,w2)
其中 n ( w 1 , w 2 ) n(w_1, w_2) n(w1,w2)为语料库中以 w 1 w_1 w1作为第一个词, w 2 w_2 w2作为第二个词的文本的数量。
n元语法
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。 n n n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面 n n n个词相关,即 n n n阶马尔可夫链(Markov chain of order n n n),如果 n = 1 n=1 n=1,那么有 P ( w 3 ∣ w 1 , w 2 ) = P ( w 3 ∣ w 2 ) P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2) P(w3∣w1,w2)=P(w3∣w2)。基于 n − 1 n-1 n−1阶马尔可夫链,我们可以将语言模型改写为
P ( w 1 , w 2 , … , w T ) = ∏ t = 1 T P ( w t ∣ w t − ( n − 1 ) , … , w t − 1 ) . P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) . P(w1,w2,…,wT)=t=1∏TP(wt∣wt−(n−1),…,wt−1).
以上也叫 n n n元语法( n n n-grams),它是基于 n − 1 n - 1 n−1阶马尔可夫链的概率语言模型。例如,当 n = 2 n=2 n=2时,含有4个词的文本序列的概率就可以改写为:
当 n n n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列 w 1 , w 2 , w 3 , w 4 w_1, w_2, w_3, w_4 w1,w2,w3,w4在一元语法、二元语法和三元语法中的概率分别为
P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ) P ( w 3 ) P ( w 4 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 2 ) P ( w 4 ∣ w 3 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 2 , w 3 ) . \begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned} P(w1,w2,w3,w4)P(w1,w2,w3,w4)P(w1,w2,w3,w4)=P(w1)P(w2)P(w3)P(w4),=P(w1)P(w2∣w1)P(w3∣w2)P(w4∣w3),=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w2,w3).
当 n n n较小时, n n n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当 n n n较大时, n n n元语法需要计算并存储大量的词频和多词相邻频率。
思考: n n n元语法可能有哪些缺陷?
- 参数空间过大
- 数据稀疏
语言模型数据集
读取数据集
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
63282
想要有直升机
想要和你飞到宇宙去
想要和你融化在一起
融化在宇宙里
我每天每天每
建立字符索引
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)corpus_indices = [char_to_idx[char] for char in corpus_chars] # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
1027
chars: 想要有直升机 想要和你飞到宇宙去 想要和
indices: [1022, 648, 1025, 366, 208, 792, 199, 1022, 648, 641, 607, 625, 26, 155, 130, 5, 199, 1022, 648, 641]
定义函数load_data_jay_lyrics
,在后续章节中直接调用。
def load_data_jay_lyrics():with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:corpus_chars = f.read()corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')corpus_chars = corpus_chars[0:10000]idx_to_char = list(set(corpus_chars))char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])vocab_size = len(char_to_idx)corpus_indices = [char_to_idx[char] for char in corpus_chars]return corpus_indices, char_to_idx, idx_to_char, vocab_size
时序数据的采样
在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即 X X X=“想要有直升”, Y Y Y=“要有直升机”。
现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:
- X X X:“想要有直升”, Y Y Y:“要有直升机”
- X X X:“要有直升机”, Y Y Y:“有直升机,”
- X X X:“有直升机,”, Y Y Y:“直升机,想”
- …
- X X X:“要和你飞到”, Y Y Y:“和你飞到宇”
- X X X:“和你飞到宇”, Y Y Y:“你飞到宇宙”
- X X X:“你飞到宇宙”, Y Y Y:“飞到宇宙去”
可以看到,如果序列的长度为 T T T,时间步数为 n n n,那么一共有 T − n T-n T−n个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。
随机采样
下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size
是每个小批量的样本数,num_steps
是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。
import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):# 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符num_examples = (len(corpus_indices) - 1) // num_steps # 下取整,得到不重叠情况下的样本个数example_indices = [i * num_steps for i in range(num_examples)] # 每个样本的第一个字符在corpus_indices中的下标random.shuffle(example_indices)def _data(i):# 返回从i开始的长为num_steps的序列return corpus_indices[i: i + num_steps]if device is None:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')for i in range(0, num_examples, batch_size):# 每次选出batch_size个随机样本batch_indices = example_indices[i: i + batch_size] # 当前batch的各个样本的首字符的下标X = [_data(j) for j in batch_indices]Y = [_data(j + 1) for j in batch_indices]yield torch.tensor(X, device=device), torch.tensor(Y, device=device)
测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X
和标签Y
。
my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):print('X: ', X, '\nY:', Y, '\n')
X: tensor([[ 6, 7, 8, 9, 10, 11],[12, 13, 14, 15, 16, 17]])
Y: tensor([[ 7, 8, 9, 10, 11, 12],[13, 14, 15, 16, 17, 18]]) X: tensor([[ 0, 1, 2, 3, 4, 5],[18, 19, 20, 21, 22, 23]])
Y: tensor([[ 1, 2, 3, 4, 5, 6],[19, 20, 21, 22, 23, 24]])
相邻采样
在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):if device is None:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')corpus_len = len(corpus_indices) // batch_size * batch_size # 保留下来的序列的长度corpus_indices = corpus_indices[: corpus_len] # 仅保留前corpus_len个字符indices = torch.tensor(corpus_indices, device=device)indices = indices.view(batch_size, -1) # resize成(batch_size, )batch_num = (indices.shape[1] - 1) // num_stepsfor i in range(batch_num):i = i * num_stepsX = indices[:, i: i + num_steps]Y = indices[:, i + 1: i + num_steps + 1]yield X, Y
同样的设置下,打印相邻采样每次读取的小批量样本的输入X
和标签Y
。相邻的两个随机小批量在原始序列上的位置相毗邻。
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):print('X: ', X, '\nY:', Y, '\n')
X: tensor([[ 0, 1, 2, 3, 4, 5],[15, 16, 17, 18, 19, 20]])
Y: tensor([[ 1, 2, 3, 4, 5, 6],[16, 17, 18, 19, 20, 21]]) X: tensor([[ 6, 7, 8, 9, 10, 11],[21, 22, 23, 24, 25, 26]])
Y: tensor([[ 7, 8, 9, 10, 11, 12],[22, 23, 24, 25, 26, 27]])
这篇关于《动手学深度学习》task2_2 语言模型与数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!