《动手学深度学习》task2_2 语言模型与数据集

2023-12-05 10:18

本文主要是介绍《动手学深度学习》task2_2 语言模型与数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 语言模型
    • 语言模型
    • n元语法
  • 语言模型数据集
    • 读取数据集
    • 建立字符索引
    • 时序数据的采样
      • 随机采样
      • 相邻采样

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为 T T T的词的序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
P ( w 1 , w 2 , … , w T ) . P(w_1, w_2, \ldots, w_T). P(w1,w2,,wT).
本节我们介绍基于统计的语言模型,主要是 n n n元语法( n n n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型

假设序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,,wT中的每个词是依次生成的,我们有
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ P(w_1, w_2, \l…
例如,一段含有4个词的文本序列的概率
P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 1 , w 2 , w 3 ) . P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3). P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3).
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如, w 1 w_1 w1的概率可以计算为:
P ^ ( w 1 ) = n ( w 1 ) n \hat P(w_1) = \frac{n(w_1)}{n} P^(w1)=nn(w1)
其中 n ( w 1 ) n(w_1) n(w1)为语料库中以 w 1 w_1 w1作为第一个词的文本的数量, n n n为语料库中文本的总数量。

类似的,给定 w 1 w_1 w1情况下, w 2 w_2 w2的条件概率可以计算为:
P ^ ( w 2 ∣ w 1 ) = n ( w 1 , w 2 ) n ( w 1 ) \hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)} P^(w2w1)=n(w1)n(w1,w2)
其中 n ( w 1 , w 2 ) n(w_1, w_2) n(w1,w2)为语料库中以 w 1 w_1 w1作为第一个词, w 2 w_2 w2作为第二个词的文本的数量。

n元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。 n n n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面 n n n个词相关,即 n n n阶马尔可夫链(Markov chain of order n n n),如果 n = 1 n=1 n=1,那么有 P ( w 3 ∣ w 1 , w 2 ) = P ( w 3 ∣ w 2 ) P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2) P(w3w1,w2)=P(w3w2)。基于 n − 1 n-1 n1阶马尔可夫链,我们可以将语言模型改写为
P ( w 1 , w 2 , … , w T ) = ∏ t = 1 T P ( w t ∣ w t − ( n − 1 ) , … , w t − 1 ) . P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) . P(w1,w2,,wT)=t=1TP(wtwt(n1),,wt1).
以上也叫 n n n元语法( n n n-grams),它是基于 n − 1 n - 1 n1阶马尔可夫链的概率语言模型。例如,当 n = 2 n=2 n=2时,含有4个词的文本序列的概率就可以改写为:
在这里插入图片描述

n n n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列 w 1 , w 2 , w 3 , w 4 w_1, w_2, w_3, w_4 w1,w2,w3,w4在一元语法、二元语法和三元语法中的概率分别为
P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ) P ( w 3 ) P ( w 4 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 2 ) P ( w 4 ∣ w 3 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 2 , w 3 ) . \begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned} P(w1,w2,w3,w4)P(w1,w2,w3,w4)P(w1,w2,w3,w4)=P(w1)P(w2)P(w3)P(w4),=P(w1)P(w2w1)P(w3w2)P(w4w3),=P(w1)P(w2w1)P(w3w1,w2)P(w4w2,w3).
n n n较小时, n n n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当 n n n较大时, n n n元语法需要计算并存储大量的词频和多词相邻频率。

思考: n n n元语法可能有哪些缺陷?

  1. 参数空间过大
  2. 数据稀疏

语言模型数据集

读取数据集

with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
63282
想要有直升机
想要和你飞到宇宙去
想要和你融化在一起
融化在宇宙里
我每天每天每

建立字符索引

idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)corpus_indices = [char_to_idx[char] for char in corpus_chars]  # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
1027
chars: 想要有直升机 想要和你飞到宇宙去 想要和
indices: [1022, 648, 1025, 366, 208, 792, 199, 1022, 648, 641, 607, 625, 26, 155, 130, 5, 199, 1022, 648, 641]

定义函数load_data_jay_lyrics,在后续章节中直接调用。

def load_data_jay_lyrics():with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:corpus_chars = f.read()corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')corpus_chars = corpus_chars[0:10000]idx_to_char = list(set(corpus_chars))char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])vocab_size = len(char_to_idx)corpus_indices = [char_to_idx[char] for char in corpus_chars]return corpus_indices, char_to_idx, idx_to_char, vocab_size

时序数据的采样

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即 X X X=“想要有直升”, Y Y Y=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

  • X X X:“想要有直升”, Y Y Y:“要有直升机”
  • X X X:“要有直升机”, Y Y Y:“有直升机,”
  • X X X:“有直升机,”, Y Y Y:“直升机,想”
  • X X X:“要和你飞到”, Y Y Y:“和你飞到宇”
  • X X X:“和你飞到宇”, Y Y Y:“你飞到宇宙”
  • X X X:“你飞到宇宙”, Y Y Y:“飞到宇宙去”

可以看到,如果序列的长度为 T T T,时间步数为 n n n,那么一共有 T − n T-n Tn个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):# 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符num_examples = (len(corpus_indices) - 1) // num_steps  # 下取整,得到不重叠情况下的样本个数example_indices = [i * num_steps for i in range(num_examples)]  # 每个样本的第一个字符在corpus_indices中的下标random.shuffle(example_indices)def _data(i):# 返回从i开始的长为num_steps的序列return corpus_indices[i: i + num_steps]if device is None:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')for i in range(0, num_examples, batch_size):# 每次选出batch_size个随机样本batch_indices = example_indices[i: i + batch_size]  # 当前batch的各个样本的首字符的下标X = [_data(j) for j in batch_indices]Y = [_data(j + 1) for j in batch_indices]yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X和标签Y

my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):print('X: ', X, '\nY:', Y, '\n')
X:  tensor([[ 6,  7,  8,  9, 10, 11],[12, 13, 14, 15, 16, 17]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],[13, 14, 15, 16, 17, 18]]) X:  tensor([[ 0,  1,  2,  3,  4,  5],[18, 19, 20, 21, 22, 23]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],[19, 20, 21, 22, 23, 24]]) 

相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):if device is None:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')corpus_len = len(corpus_indices) // batch_size * batch_size  # 保留下来的序列的长度corpus_indices = corpus_indices[: corpus_len]  # 仅保留前corpus_len个字符indices = torch.tensor(corpus_indices, device=device)indices = indices.view(batch_size, -1)  # resize成(batch_size, )batch_num = (indices.shape[1] - 1) // num_stepsfor i in range(batch_num):i = i * num_stepsX = indices[:, i: i + num_steps]Y = indices[:, i + 1: i + num_steps + 1]yield X, Y

同样的设置下,打印相邻采样每次读取的小批量样本的输入X和标签Y。相邻的两个随机小批量在原始序列上的位置相毗邻。

for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):print('X: ', X, '\nY:', Y, '\n')
X:  tensor([[ 0,  1,  2,  3,  4,  5],[15, 16, 17, 18, 19, 20]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],[16, 17, 18, 19, 20, 21]]) X:  tensor([[ 6,  7,  8,  9, 10, 11],[21, 22, 23, 24, 25, 26]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],[22, 23, 24, 25, 26, 27]]) 

这篇关于《动手学深度学习》task2_2 语言模型与数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/457156

相关文章

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1