基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换

本文主要是介绍基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2 数据清洗、转换

此实验使用S3作为数据源

ETL:

E    extract         输入
T    transform     转换
L    load             输出

大纲

  • 2 数据清洗、转换
    • 2.1 架构图
    • 2.2 数据清洗
    • 2.3 编辑脚本
      • 2.3.1 连接数据源(s3)
      • 2.3.2. 数据结构转换
      • 2.3.2 数据结构拆分、定义
      • 2.3.3 清洗后的数据写入新s3
      • 2.3.4 运行作业
    • 2.4 数据分区
      • 2.4.1 编辑脚本
      • 2.4.2 运行脚本
    • 2.5 总结

2.1 架构图

在这里插入图片描述

2.2 数据清洗

此步会将S3中的原始数据清洗成我们想要的自定义结构的数据。之后,我们可通过APIGateway+Lambda+Athena来实现一个无服务器的数据分析服务。

步骤图例
1、入口在这里插入图片描述
2、创建Job(s3作为数据源,则Type选择Spark,若为Kinesis等,选择Stream Spark)在这里插入图片描述
3、IAM角色需要有s3与Glue的权限在这里插入图片描述
4、选择s3脚本位置,若已经完成脚本的编写工作,则可以选择第二项或第三项,若无则Glue会提供默认脚本在这里插入图片描述
5、安全配置参数在这里插入图片描述建议:添加参数–enable-auto-scaling为true。每次在我们执行Job任务时,会根据运行 ETL 任务的数据处理单元(DPU)的个数来分配动态IP,在我们子网的动态IP数低于DPU数时,Job将会执行失败。此参数将会动态分配IP。
6、数据源()在这里插入图片描述
7、数据目标(我们会将清洗后的数据存储到新的s3桶)在这里插入图片描述
8、设计架构(在本案例中,我们会自定义脚本。所以不再在此处设计架构)(此处设计后,脚本会自动生成相关代码)在这里插入图片描述
9、保存在这里插入图片描述

2.3 编辑脚本

脚本中的args参数的键值需要从Job的安全配置参数中定义

2.3.1 连接数据源(s3)

#数据源
datasource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "datasource")

2.3.2. 数据结构转换

mapped_readings = ApplyMapping.apply(frame = datasource, mappings = [("lclid", "string", "meter_id", "string"), \("datetime", "string", "reading_time", "string"), \("KWH/hh (per half hour)", "double", "reading_value", "double")], \transformation_ctx = "mapped_readings")

2.3.2 数据结构拆分、定义

mapped_readings_df = DynamicFrame.toDF(mapped_readings)mapped_readings_df = mapped_readings_df.withColumn("obis_code", lit(""))
mapped_readings_df = mapped_readings_df.withColumn("reading_type", lit("INT"))reading_time = to_timestamp(col("reading_time"), "yyyy-MM-dd HH:mm:ss")
mapped_readings_df = mapped_readings_df \.withColumn("week_of_year", weekofyear(reading_time)) \.withColumn("date_str", regexp_replace(col("reading_time").substr(1,10), "-", "")) \.withColumn("day_of_month", dayofmonth(reading_time)) \.withColumn("month", month(reading_time)) \.withColumn("year", year(reading_time)) \.withColumn("hour", hour(reading_time)) \.withColumn("minute", minute(reading_time)) \.withColumn("reading_date_time", reading_time) \.drop("reading_time")

2.3.3 清洗后的数据写入新s3

# write data to S3
filteredMeterReads = DynamicFrame.fromDF(mapped_readings_df, glueContext, "filteredMeterReads")s3_clean_path = "s3://" + args['clean_data_bucket']glueContext.write_dynamic_frame.from_options(frame = filteredMeterReads,connection_type = "s3",connection_options = {"path": s3_clean_path},format = "parquet",transformation_ctx = "s3CleanDatasink")

2.3.4 运行作业

    执行成功后,状态将变为"SUCCESS",失败将会给出失败信息,可在CloudWatch 中查看详情

在这里插入图片描述

在这里插入图片描述


清洗后的数据保存到了s3


在这里插入图片描述
数据清洗完毕后,可通过上一篇中的爬网程序步骤,将清洗后的数据的结构创建表到数据目录中,
此时我们可以使用Athena对清洗后的数据进行分析。

2.4 数据分区

接下来我们对数据进行分区处理(此处只提供了按天分区
重新进行数据清洗中的创建Job操作后,重写脚本

2.4.1 编辑脚本

连接数据源。表为上一步最后重新爬取生成的新表。

cleanedMeterDataSource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "cleanedMeterDataSource")

根据type与data_str分区

business_zone_bucket_path_daily = "s3://{}/daily".format(args['business_zone_bucket'])businessZone = glueContext.write_dynamic_frame.from_options(frame = cleanedMeterDataSource, \connection_type = "s3", \connection_options = {"path": business_zone_bucket_path_daily, "partitionKeys": ["reading_type", "date_str"]},\format = "parquet", \transformation_ctx = "businessZone")

2.4.2 运行脚本

分区后的数据结果:
在这里插入图片描述
再次创建、运行爬网程序,将会在数据目录中生成新的分区表。

2.5 总结

到这一步,我们已经使用Glue ETL对s3桶中的数据进行了清洗、分区操作。在进行上篇中的Athena操作后,我们已经可以通过Athena直接查询到清洗、分区后的数据集了。
接下来,我们会通过使用APIGateway+Lambda+Athena来构建一个无服务器的数据查询分析服务。

这篇关于基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456729

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,