详解卷积神经网络(Convolutional Neural Networks, CNNs)

2023-12-05 06:36

本文主要是介绍详解卷积神经网络(Convolutional Neural Networks, CNNs),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全连接神经网络基础

全连接神经网络(Fully Connected Neural Network 或 Multi-Layer Perceptron, MLP)是最简单的深度学习模型之一。一个典型的全连接网络由多个层组成,每一层包含多个神经元或节点。每个神经元与上一层的所有神经元相连,并通过激活函数产生输出。

全连接网络的每一层都执行以下操作:

  1. 接收来自上一层(或输入层)的输入。
  2. 将输入与该层的权重进行矩阵相乘。
  3. 加上一定的偏置项。
  4. 通过激活函数生成激活值。

在传统的全连接网络中,最常见的激活函数是Sigmoid、Tanh、ReLU等。

为什么全连接神经网络是卷积神经网络的基础?

全连接神经网络是理解复杂网络结构的基础。它教会我们如何堆叠层,如何通过反向传播调整权重,以及如何利用激活函数引入非线性。这些基础概念在卷积神经网络中同样适用。

卷积神经网络(Convolutional Neural Networks, CNNs)

卷积神经网络是专门用来处理具有网格结构输入的神经网络,例如图像(2D网格),声音信号(1D网格)等。CNN通过引入卷积层显著减少了模型参数的数量,并能够学习输入数据的局部特征。

卷积层 (Convolutional Layer)

卷积层通过一组可学习的卷积核(也称为过滤器或特征检测器)来提取特征。每个卷积核在输入图像上滑动(或卷积操作),并生成特征图(也称为激活图)。这允许网络专注于图像的局部信息,并且具有平移不变性。

池化层(Pooling Layer)

池化层通常位于连续的卷积层之间,用于降低特征图的空间维度,增强网络对小的变化的不变性,并减少计算量。最常见的池化操作是最大池化,它从覆盖的区域中提取最大值。

全连接层(Fully Connected Layer)

全连接层通常位于CNN的末尾,它们的作用是将前面卷积层和池化层学习到的局部特征组合起来完成特定的任务,比如分类。

激活函数

像全连接网络一样,CNN的卷积层和全连接层之后也会跟有激活函数,ReLU是现代CNNs中最常用的激活函数之一,因为它能够加速训练且防止梯度消失问题。

使用PyTorch搭建卷积神经网络

PyTorch是一个流行的开源机器学习库,尤其在研究领域受到青睐。下面是一个使用PyTorch搭建简单卷积神经网络的示例代码,带有详细的中文注释:

import torch
import torch.nn as nn
import torch.nn.functional as F# 定义CNN模型的类
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 卷积层1,使用了32个3x3的卷积核self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)# 卷积层2,使用了64个3x3的卷积核self.conv2 = nn.Conv2d(32, 64, 3, padding=1)# 最大池化层,使用了2x2的池化窗口self.pool = nn.MaxPool2d(kernel_size=2, stride=2)# 全连接层1,输入特征数量必须与前一层的输出相匹配# 这里的输入特征数量视乎前面层数和池化后的结果而定self.fc1 = nn.Linear(64 * 7 * 7, 128)# 全连接层2,用作输出层,假设我们要分类10个类别self.fc2 = nn.Linear(128, 10)# 定义前向传播路径def forward(self, x):# 经过第一个卷积层后使用ReLU激活函数x = F.relu(self.conv1(x))# 经过最大池化层x = self.pool(x)# 经过第二个卷积层后使用ReLU激活函数x = F.relu(self.conv2(x))# 经过最大池化层x = self.pool(x)# 将多维数据展平为一维,准备输入全连接层x = x.view(-1, 64 * 7 * 7)# 经过第一个全连接层后使用ReLU激活函数x = F.relu(self.fc1(x))# 经过输出层,并不使用激活函数,因为这里输出的是分类结果x = self.fc2(x)return x# 创建模型实例
model = SimpleCNN()# 打印模型结构
print(model)

以上代码中,我们构建了一个简单的卷积神经网络,它有2个卷积层,2个池化层以及完全连接的层。在实践中,您可能需要根据输入数据的大小和目标任务调整网络的大小和复杂性。例如,如果您处理的是更高分辨率的图像,您可能需要更多的卷积层或者更大的全连接层。

请注意,在实际应用中搭建CNN时,计算输入特征数量给全连接层是一个重要步骤,需要根据您的输入数据和之前层的设置来手动计算。例如,在上面的代码中,逻辑是假设输入的图像大小是28x28像素,经过两次2x2的池化后,其大小变为7x7像素(原大小除以池化窗口stride的大小的平方),因此在全连接层fc1中的输入特征数量必须设置为64(第二个卷积层的输出通道数)乘以7乘以7(池化后的图像大小)。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

链接: 人工智能交流群【最新顶会与项目实战】(点击跳转)

在这里插入图片描述

这篇关于详解卷积神经网络(Convolutional Neural Networks, CNNs)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456543

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super