详解卷积神经网络(Convolutional Neural Networks, CNNs)

2023-12-05 06:36

本文主要是介绍详解卷积神经网络(Convolutional Neural Networks, CNNs),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全连接神经网络基础

全连接神经网络(Fully Connected Neural Network 或 Multi-Layer Perceptron, MLP)是最简单的深度学习模型之一。一个典型的全连接网络由多个层组成,每一层包含多个神经元或节点。每个神经元与上一层的所有神经元相连,并通过激活函数产生输出。

全连接网络的每一层都执行以下操作:

  1. 接收来自上一层(或输入层)的输入。
  2. 将输入与该层的权重进行矩阵相乘。
  3. 加上一定的偏置项。
  4. 通过激活函数生成激活值。

在传统的全连接网络中,最常见的激活函数是Sigmoid、Tanh、ReLU等。

为什么全连接神经网络是卷积神经网络的基础?

全连接神经网络是理解复杂网络结构的基础。它教会我们如何堆叠层,如何通过反向传播调整权重,以及如何利用激活函数引入非线性。这些基础概念在卷积神经网络中同样适用。

卷积神经网络(Convolutional Neural Networks, CNNs)

卷积神经网络是专门用来处理具有网格结构输入的神经网络,例如图像(2D网格),声音信号(1D网格)等。CNN通过引入卷积层显著减少了模型参数的数量,并能够学习输入数据的局部特征。

卷积层 (Convolutional Layer)

卷积层通过一组可学习的卷积核(也称为过滤器或特征检测器)来提取特征。每个卷积核在输入图像上滑动(或卷积操作),并生成特征图(也称为激活图)。这允许网络专注于图像的局部信息,并且具有平移不变性。

池化层(Pooling Layer)

池化层通常位于连续的卷积层之间,用于降低特征图的空间维度,增强网络对小的变化的不变性,并减少计算量。最常见的池化操作是最大池化,它从覆盖的区域中提取最大值。

全连接层(Fully Connected Layer)

全连接层通常位于CNN的末尾,它们的作用是将前面卷积层和池化层学习到的局部特征组合起来完成特定的任务,比如分类。

激活函数

像全连接网络一样,CNN的卷积层和全连接层之后也会跟有激活函数,ReLU是现代CNNs中最常用的激活函数之一,因为它能够加速训练且防止梯度消失问题。

使用PyTorch搭建卷积神经网络

PyTorch是一个流行的开源机器学习库,尤其在研究领域受到青睐。下面是一个使用PyTorch搭建简单卷积神经网络的示例代码,带有详细的中文注释:

import torch
import torch.nn as nn
import torch.nn.functional as F# 定义CNN模型的类
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 卷积层1,使用了32个3x3的卷积核self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)# 卷积层2,使用了64个3x3的卷积核self.conv2 = nn.Conv2d(32, 64, 3, padding=1)# 最大池化层,使用了2x2的池化窗口self.pool = nn.MaxPool2d(kernel_size=2, stride=2)# 全连接层1,输入特征数量必须与前一层的输出相匹配# 这里的输入特征数量视乎前面层数和池化后的结果而定self.fc1 = nn.Linear(64 * 7 * 7, 128)# 全连接层2,用作输出层,假设我们要分类10个类别self.fc2 = nn.Linear(128, 10)# 定义前向传播路径def forward(self, x):# 经过第一个卷积层后使用ReLU激活函数x = F.relu(self.conv1(x))# 经过最大池化层x = self.pool(x)# 经过第二个卷积层后使用ReLU激活函数x = F.relu(self.conv2(x))# 经过最大池化层x = self.pool(x)# 将多维数据展平为一维,准备输入全连接层x = x.view(-1, 64 * 7 * 7)# 经过第一个全连接层后使用ReLU激活函数x = F.relu(self.fc1(x))# 经过输出层,并不使用激活函数,因为这里输出的是分类结果x = self.fc2(x)return x# 创建模型实例
model = SimpleCNN()# 打印模型结构
print(model)

以上代码中,我们构建了一个简单的卷积神经网络,它有2个卷积层,2个池化层以及完全连接的层。在实践中,您可能需要根据输入数据的大小和目标任务调整网络的大小和复杂性。例如,如果您处理的是更高分辨率的图像,您可能需要更多的卷积层或者更大的全连接层。

请注意,在实际应用中搭建CNN时,计算输入特征数量给全连接层是一个重要步骤,需要根据您的输入数据和之前层的设置来手动计算。例如,在上面的代码中,逻辑是假设输入的图像大小是28x28像素,经过两次2x2的池化后,其大小变为7x7像素(原大小除以池化窗口stride的大小的平方),因此在全连接层fc1中的输入特征数量必须设置为64(第二个卷积层的输出通道数)乘以7乘以7(池化后的图像大小)。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

链接: 人工智能交流群【最新顶会与项目实战】(点击跳转)

在这里插入图片描述

这篇关于详解卷积神经网络(Convolutional Neural Networks, CNNs)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456543

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML