【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 一、近似表达方式
    • 1. 插值(Interpolation)
    • 2. 拟合(Fitting)
    • 3. 投影(Projection)
  • 二、Lagrange插值
    • 1. 拉格朗日插值方法
    • 2. Lagrange插值公式
      • a. 线性插值(n=1)
      • b. 抛物插值(n=2)
  • 三、Newton插值
    • 1. 天书
    • 2. 人话
    • 3. 例题
    • 4. python实现
    • 5. C语言实现

一、近似表达方式

  插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、预测或表示。

1. 插值(Interpolation)

  指通过已知数据点之间的插值方法,来估计或推算出在这些数据点之间的数值。插值可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。

2. 拟合(Fitting)

  指通过选择合适的函数形式和参数,将一个数学模型与已知数据点拟合得最好的过程。拟合的目标是找到一个函数,使其在数据点附近的值与实际观测值尽可能接近。拟合可以用于数据分析、曲线拟合、回归分析等领域。

3. 投影(Projection)

  指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。投影可以用于降维、数据压缩、特征提取等领域,以及计算机图形学中的投影变换。

二、Lagrange插值

   Lagrange插值是一种用于通过已知数据点构造一个多项式函数的方法基于拉格朗日插值多项式的原理(该多项式通过每个数据点并满足相应的条件),拉格朗日插值可用于估计数据点之间的值,而不仅仅是在给定数据点上进行插值。

1. 拉格朗日插值方法

  1. 拉格朗日基函数: 对于给定的插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn,拉格朗日插值使用如下的拉格朗日基函数:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 插值条件: 拉格朗日插值要求插值多项式满足插值条件:对所有 i i i P ( x i ) = y i P(x_i) = y_i P(xi)=yi

  3. 插值多项式: 构造插值多项式为: P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

  通过这种方法,可以在给定的数据点上获得一个平滑的插值函数,使得在这些数据点之间的任何位置上都可以估计函数的值。Lagrange插值在数据点较少或数据点之间存在较大间隔时可能会出现一些问题,例如插值多项式可能会产生振荡现象,这被称为Runge现象

2. Lagrange插值公式

L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

a. 线性插值(n=1)

P ( x ) = y 0 ( x − x 1 ) ( x 0 − x 1 ) + y 1 ( x − x 0 ) ( x 1 − x 0 ) P(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} P(x)=y0(x0x1)(xx1)+y1(x1x0)(xx0)

b. 抛物插值(n=2)

P ( x ) = y 0 ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) + y 1 ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) + y 2 ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) P(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} P(x)=y0(x0x1)(x0x2)(xx1)(xx2)+y1(x1x0)(x1x2)(xx0)(xx2)+y2(x2x0)(x2x1)(xx0)(xx1)

三、Newton插值

1. 天书

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 人话

  Newton插值基于差商的概念:通过给定的一组数据点,Newton插值可以生成一个通过这些点的多项式,从而在给定的数据范围内进行插值和外推。
  Newton插值的基本思想是使用差商来递归地构建一个多项式。差商是通过递归地计算数据点之间的差分来定义的。具体而言,对于给定的数据点 ( x 0 , y 0 ) , ( x 1 , y 1 ) , . . . , ( x n , y n ) (x_0, y_0), (x_1, y_1), ..., (x_n, y_n) (x0,y0),(x1,y1),...,(xn,yn),差商可以表示为:

f [ x 0 ] = y 0 f[x_{0}] = y_{0} f[x0]=y0 f [ x 1 , x 0 ] = ( f [ x 1 ] − f [ x 0 ] ) ( x 1 − x 0 ) f[x_{1}, x_{0}] =\frac{ (f[x_{1}] - f[x_{0}]) }{ (x_{1} - x_{0})} f[x1,x0]=(x1x0)(f[x1]f[x0]) f [ x 2 , x 1 , x 0 ] = ( f [ x 2 , x 1 ] − f [ x 1 , x 0 ] ) ( x 2 − x 0 ) f[x_{2}, x_{1}, x_{0}] =\frac{ (f[x_{2}, x_{1}] - f[x_{1}, x_{0}]) }{ (x_{2} - x_{0})} f[x2,x1,x0]=(x2x0)(f[x2,x1]f[x1,x0]) … … … … ………… ………… f [ x n , x n − 1 , . . . , x 0 ] = ( f [ x n , x n − 1 , . . . , x 1 ] − f [ x n − 1 , . . . , x 0 ] ) ( x n − x 0 ) f[x_{n}, x_{n-1}, ..., x_{0}] = \frac{(f[x_{n}, x_{n-1}, ..., x_{1}] - f[x_{n-1}, ..., x_{0}])}{(x_{n} - x_{0})} f[xn,xn1,...,x0]=(xnx0)(f[xn,xn1,...,x1]f[xn1,...,x0])
然后,通过将这些差分商逐步添加到多项式中,可以得到一个多项式,表示为:
P ( x ) = f [ x 0 ] + f [ x 1 , x 0 ] ( x − x 0 ) + f [ x 2 , x 1 , x 0 ] ( x − x 0 ) ( x − x 1 ) + . . . P(x) = f[x_{0}] + f[x_{1}, x_{0}](x - x_{0}) + f[x_{2}, x_{1}, x_{0}](x - x_{0})(x - x_{1}) + ... P(x)=f[x0]+f[x1,x0](xx0)+f[x2,x1,x0](xx0)(xx1)+...

  Newton插值的优点之一是它可以通过添加更多的数据点来逐步改进插值结果。然而,同Lagrange插值一样,它也存在龙格现象(Runge’s phenomenon),导致在边界处产生振荡。

3. 例题

在这里插入图片描述

4. python实现

def newton_interpolation(x, y, xi):# 计算差分商n = len(x)f = [[0] * n for _ in range(n)]for i in range(n):f[i][0] = y[i]for j in range(1, n):for i in range(n - j):f[i][j] = (f[i + 1][j - 1] - f[i][j - 1]) / (x[i + j] - x[i])# 构建插值多项式result = f[0][0]for j in range(1, n):term = f[0][j]for i in range(j):term *= (xi - x[i])result += termreturn result# 示例数据
x = [0.32, 0.34, 0.36]
y = [0.314567, 0.333487, 0.352274]
xi = 0.3367# 进行插值
interpolated_value = newton_interpolation(x, y, xi)
print("插值结果:", interpolated_value)

输出:

插值结果: 0.3303743620375

5. C语言实现

#include <stdio.h>double newton_interpolation(double x[], double y[], int n, double xi) {// 计算差分商double f[n][n];for (int i = 0; i < n; i++) {f[i][0] = y[i];}for (int j = 1; j < n; j++) {for (int i = 0; i < n - j; i++) {f[i][j] = (f[i+1][j-1] - f[i][j-1]) / (x[i+j] - x[i]);}}// 构建插值多项式double result = f[0][0];for (int j = 1; j < n; j++) {double term = f[0][j];for (int i = 0; i < j; i++) {term *= (xi - x[i]);}result += term;}return result;
}int main() {// 示例数据double x[] = {0.32, 0.34, 0.36};double y[] = {0.314567, 0.333487, 0.352274};int n = sizeof(x) / sizeof(x[0]);double xi = 0.3367;// 进行插值double interpolated_value = newton_interpolation(x, y, n, xi);printf("插值结果: %f\n", interpolated_value);return 0;
}

输出:

插值结果: 0.330374

  • Lagrange插值使用基于Lagrange多项式的方法来构建插值多项式.
    • Lagrange多项式是通过将每个数据点与一个基函数相乘,并使得在其他数据点上该基函数为零来构造的。最终的插值多项式是将所有这些基函数相加得到的。
    • Lagrange插值的优点是易于理解和实现,但在数据点较多时可能会导致计算复杂度较高的问题。
  • Newton插值使用差商的概念来构建插值多项式。
    • 差商是一个递归定义的概念,用于计算插值多项式中的系数。差商的计算可以通过表格形式进行,其中每一列都表示不同阶数的差商,通过计算差商,可以逐步构建插值多项式。
    • Newton插值的优点是在计算差商时可以重复使用已计算的差商值,从而减少计算量。

这篇关于【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456442

相关文章

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

将java程序打包成可执行文件的实现方式

《将java程序打包成可执行文件的实现方式》本文介绍了将Java程序打包成可执行文件的三种方法:手动打包(将编译后的代码及JRE运行环境一起打包),使用第三方打包工具(如Launch4j)和JDK自带... 目录1.问题提出2.如何将Java程序打包成可执行文件2.1将编译后的代码及jre运行环境一起打包2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function