【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 一、近似表达方式
    • 1. 插值(Interpolation)
    • 2. 拟合(Fitting)
    • 3. 投影(Projection)
  • 二、Lagrange插值
    • 1. 拉格朗日插值方法
    • 2. Lagrange插值公式
      • a. 线性插值(n=1)
      • b. 抛物插值(n=2)
  • 三、Newton插值
    • 1. 天书
    • 2. 人话
    • 3. 例题
    • 4. python实现
    • 5. C语言实现

一、近似表达方式

  插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、预测或表示。

1. 插值(Interpolation)

  指通过已知数据点之间的插值方法,来估计或推算出在这些数据点之间的数值。插值可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。

2. 拟合(Fitting)

  指通过选择合适的函数形式和参数,将一个数学模型与已知数据点拟合得最好的过程。拟合的目标是找到一个函数,使其在数据点附近的值与实际观测值尽可能接近。拟合可以用于数据分析、曲线拟合、回归分析等领域。

3. 投影(Projection)

  指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。投影可以用于降维、数据压缩、特征提取等领域,以及计算机图形学中的投影变换。

二、Lagrange插值

   Lagrange插值是一种用于通过已知数据点构造一个多项式函数的方法基于拉格朗日插值多项式的原理(该多项式通过每个数据点并满足相应的条件),拉格朗日插值可用于估计数据点之间的值,而不仅仅是在给定数据点上进行插值。

1. 拉格朗日插值方法

  1. 拉格朗日基函数: 对于给定的插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn,拉格朗日插值使用如下的拉格朗日基函数:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 插值条件: 拉格朗日插值要求插值多项式满足插值条件:对所有 i i i P ( x i ) = y i P(x_i) = y_i P(xi)=yi

  3. 插值多项式: 构造插值多项式为: P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

  通过这种方法,可以在给定的数据点上获得一个平滑的插值函数,使得在这些数据点之间的任何位置上都可以估计函数的值。Lagrange插值在数据点较少或数据点之间存在较大间隔时可能会出现一些问题,例如插值多项式可能会产生振荡现象,这被称为Runge现象

2. Lagrange插值公式

L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

a. 线性插值(n=1)

P ( x ) = y 0 ( x − x 1 ) ( x 0 − x 1 ) + y 1 ( x − x 0 ) ( x 1 − x 0 ) P(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} P(x)=y0(x0x1)(xx1)+y1(x1x0)(xx0)

b. 抛物插值(n=2)

P ( x ) = y 0 ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) + y 1 ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) + y 2 ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) P(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} P(x)=y0(x0x1)(x0x2)(xx1)(xx2)+y1(x1x0)(x1x2)(xx0)(xx2)+y2(x2x0)(x2x1)(xx0)(xx1)

三、Newton插值

1. 天书

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 人话

  Newton插值基于差商的概念:通过给定的一组数据点,Newton插值可以生成一个通过这些点的多项式,从而在给定的数据范围内进行插值和外推。
  Newton插值的基本思想是使用差商来递归地构建一个多项式。差商是通过递归地计算数据点之间的差分来定义的。具体而言,对于给定的数据点 ( x 0 , y 0 ) , ( x 1 , y 1 ) , . . . , ( x n , y n ) (x_0, y_0), (x_1, y_1), ..., (x_n, y_n) (x0,y0),(x1,y1),...,(xn,yn),差商可以表示为:

f [ x 0 ] = y 0 f[x_{0}] = y_{0} f[x0]=y0 f [ x 1 , x 0 ] = ( f [ x 1 ] − f [ x 0 ] ) ( x 1 − x 0 ) f[x_{1}, x_{0}] =\frac{ (f[x_{1}] - f[x_{0}]) }{ (x_{1} - x_{0})} f[x1,x0]=(x1x0)(f[x1]f[x0]) f [ x 2 , x 1 , x 0 ] = ( f [ x 2 , x 1 ] − f [ x 1 , x 0 ] ) ( x 2 − x 0 ) f[x_{2}, x_{1}, x_{0}] =\frac{ (f[x_{2}, x_{1}] - f[x_{1}, x_{0}]) }{ (x_{2} - x_{0})} f[x2,x1,x0]=(x2x0)(f[x2,x1]f[x1,x0]) … … … … ………… ………… f [ x n , x n − 1 , . . . , x 0 ] = ( f [ x n , x n − 1 , . . . , x 1 ] − f [ x n − 1 , . . . , x 0 ] ) ( x n − x 0 ) f[x_{n}, x_{n-1}, ..., x_{0}] = \frac{(f[x_{n}, x_{n-1}, ..., x_{1}] - f[x_{n-1}, ..., x_{0}])}{(x_{n} - x_{0})} f[xn,xn1,...,x0]=(xnx0)(f[xn,xn1,...,x1]f[xn1,...,x0])
然后,通过将这些差分商逐步添加到多项式中,可以得到一个多项式,表示为:
P ( x ) = f [ x 0 ] + f [ x 1 , x 0 ] ( x − x 0 ) + f [ x 2 , x 1 , x 0 ] ( x − x 0 ) ( x − x 1 ) + . . . P(x) = f[x_{0}] + f[x_{1}, x_{0}](x - x_{0}) + f[x_{2}, x_{1}, x_{0}](x - x_{0})(x - x_{1}) + ... P(x)=f[x0]+f[x1,x0](xx0)+f[x2,x1,x0](xx0)(xx1)+...

  Newton插值的优点之一是它可以通过添加更多的数据点来逐步改进插值结果。然而,同Lagrange插值一样,它也存在龙格现象(Runge’s phenomenon),导致在边界处产生振荡。

3. 例题

在这里插入图片描述

4. python实现

def newton_interpolation(x, y, xi):# 计算差分商n = len(x)f = [[0] * n for _ in range(n)]for i in range(n):f[i][0] = y[i]for j in range(1, n):for i in range(n - j):f[i][j] = (f[i + 1][j - 1] - f[i][j - 1]) / (x[i + j] - x[i])# 构建插值多项式result = f[0][0]for j in range(1, n):term = f[0][j]for i in range(j):term *= (xi - x[i])result += termreturn result# 示例数据
x = [0.32, 0.34, 0.36]
y = [0.314567, 0.333487, 0.352274]
xi = 0.3367# 进行插值
interpolated_value = newton_interpolation(x, y, xi)
print("插值结果:", interpolated_value)

输出:

插值结果: 0.3303743620375

5. C语言实现

#include <stdio.h>double newton_interpolation(double x[], double y[], int n, double xi) {// 计算差分商double f[n][n];for (int i = 0; i < n; i++) {f[i][0] = y[i];}for (int j = 1; j < n; j++) {for (int i = 0; i < n - j; i++) {f[i][j] = (f[i+1][j-1] - f[i][j-1]) / (x[i+j] - x[i]);}}// 构建插值多项式double result = f[0][0];for (int j = 1; j < n; j++) {double term = f[0][j];for (int i = 0; i < j; i++) {term *= (xi - x[i]);}result += term;}return result;
}int main() {// 示例数据double x[] = {0.32, 0.34, 0.36};double y[] = {0.314567, 0.333487, 0.352274};int n = sizeof(x) / sizeof(x[0]);double xi = 0.3367;// 进行插值double interpolated_value = newton_interpolation(x, y, n, xi);printf("插值结果: %f\n", interpolated_value);return 0;
}

输出:

插值结果: 0.330374

  • Lagrange插值使用基于Lagrange多项式的方法来构建插值多项式.
    • Lagrange多项式是通过将每个数据点与一个基函数相乘,并使得在其他数据点上该基函数为零来构造的。最终的插值多项式是将所有这些基函数相加得到的。
    • Lagrange插值的优点是易于理解和实现,但在数据点较多时可能会导致计算复杂度较高的问题。
  • Newton插值使用差商的概念来构建插值多项式。
    • 差商是一个递归定义的概念,用于计算插值多项式中的系数。差商的计算可以通过表格形式进行,其中每一列都表示不同阶数的差商,通过计算差商,可以逐步构建插值多项式。
    • Newton插值的优点是在计算差商时可以重复使用已计算的差商值,从而减少计算量。

这篇关于【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456442

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(