【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 一、近似表达方式
    • 1. 插值(Interpolation)
    • 2. 拟合(Fitting)
    • 3. 投影(Projection)
  • 二、Lagrange插值
    • 1. 拉格朗日插值方法
    • 2. Lagrange插值公式
      • a. 线性插值(n=1)
      • b. 抛物插值(n=2)
  • 三、Newton插值
    • 1. 天书
    • 2. 人话
    • 3. 例题
    • 4. python实现
    • 5. C语言实现

一、近似表达方式

  插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、预测或表示。

1. 插值(Interpolation)

  指通过已知数据点之间的插值方法,来估计或推算出在这些数据点之间的数值。插值可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。

2. 拟合(Fitting)

  指通过选择合适的函数形式和参数,将一个数学模型与已知数据点拟合得最好的过程。拟合的目标是找到一个函数,使其在数据点附近的值与实际观测值尽可能接近。拟合可以用于数据分析、曲线拟合、回归分析等领域。

3. 投影(Projection)

  指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。投影可以用于降维、数据压缩、特征提取等领域,以及计算机图形学中的投影变换。

二、Lagrange插值

   Lagrange插值是一种用于通过已知数据点构造一个多项式函数的方法基于拉格朗日插值多项式的原理(该多项式通过每个数据点并满足相应的条件),拉格朗日插值可用于估计数据点之间的值,而不仅仅是在给定数据点上进行插值。

1. 拉格朗日插值方法

  1. 拉格朗日基函数: 对于给定的插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn,拉格朗日插值使用如下的拉格朗日基函数:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 插值条件: 拉格朗日插值要求插值多项式满足插值条件:对所有 i i i P ( x i ) = y i P(x_i) = y_i P(xi)=yi

  3. 插值多项式: 构造插值多项式为: P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

  通过这种方法,可以在给定的数据点上获得一个平滑的插值函数,使得在这些数据点之间的任何位置上都可以估计函数的值。Lagrange插值在数据点较少或数据点之间存在较大间隔时可能会出现一些问题,例如插值多项式可能会产生振荡现象,这被称为Runge现象

2. Lagrange插值公式

L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

a. 线性插值(n=1)

P ( x ) = y 0 ( x − x 1 ) ( x 0 − x 1 ) + y 1 ( x − x 0 ) ( x 1 − x 0 ) P(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} P(x)=y0(x0x1)(xx1)+y1(x1x0)(xx0)

b. 抛物插值(n=2)

P ( x ) = y 0 ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) + y 1 ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) + y 2 ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) P(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} P(x)=y0(x0x1)(x0x2)(xx1)(xx2)+y1(x1x0)(x1x2)(xx0)(xx2)+y2(x2x0)(x2x1)(xx0)(xx1)

三、Newton插值

1. 天书

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 人话

  Newton插值基于差商的概念:通过给定的一组数据点,Newton插值可以生成一个通过这些点的多项式,从而在给定的数据范围内进行插值和外推。
  Newton插值的基本思想是使用差商来递归地构建一个多项式。差商是通过递归地计算数据点之间的差分来定义的。具体而言,对于给定的数据点 ( x 0 , y 0 ) , ( x 1 , y 1 ) , . . . , ( x n , y n ) (x_0, y_0), (x_1, y_1), ..., (x_n, y_n) (x0,y0),(x1,y1),...,(xn,yn),差商可以表示为:

f [ x 0 ] = y 0 f[x_{0}] = y_{0} f[x0]=y0 f [ x 1 , x 0 ] = ( f [ x 1 ] − f [ x 0 ] ) ( x 1 − x 0 ) f[x_{1}, x_{0}] =\frac{ (f[x_{1}] - f[x_{0}]) }{ (x_{1} - x_{0})} f[x1,x0]=(x1x0)(f[x1]f[x0]) f [ x 2 , x 1 , x 0 ] = ( f [ x 2 , x 1 ] − f [ x 1 , x 0 ] ) ( x 2 − x 0 ) f[x_{2}, x_{1}, x_{0}] =\frac{ (f[x_{2}, x_{1}] - f[x_{1}, x_{0}]) }{ (x_{2} - x_{0})} f[x2,x1,x0]=(x2x0)(f[x2,x1]f[x1,x0]) … … … … ………… ………… f [ x n , x n − 1 , . . . , x 0 ] = ( f [ x n , x n − 1 , . . . , x 1 ] − f [ x n − 1 , . . . , x 0 ] ) ( x n − x 0 ) f[x_{n}, x_{n-1}, ..., x_{0}] = \frac{(f[x_{n}, x_{n-1}, ..., x_{1}] - f[x_{n-1}, ..., x_{0}])}{(x_{n} - x_{0})} f[xn,xn1,...,x0]=(xnx0)(f[xn,xn1,...,x1]f[xn1,...,x0])
然后,通过将这些差分商逐步添加到多项式中,可以得到一个多项式,表示为:
P ( x ) = f [ x 0 ] + f [ x 1 , x 0 ] ( x − x 0 ) + f [ x 2 , x 1 , x 0 ] ( x − x 0 ) ( x − x 1 ) + . . . P(x) = f[x_{0}] + f[x_{1}, x_{0}](x - x_{0}) + f[x_{2}, x_{1}, x_{0}](x - x_{0})(x - x_{1}) + ... P(x)=f[x0]+f[x1,x0](xx0)+f[x2,x1,x0](xx0)(xx1)+...

  Newton插值的优点之一是它可以通过添加更多的数据点来逐步改进插值结果。然而,同Lagrange插值一样,它也存在龙格现象(Runge’s phenomenon),导致在边界处产生振荡。

3. 例题

在这里插入图片描述

4. python实现

def newton_interpolation(x, y, xi):# 计算差分商n = len(x)f = [[0] * n for _ in range(n)]for i in range(n):f[i][0] = y[i]for j in range(1, n):for i in range(n - j):f[i][j] = (f[i + 1][j - 1] - f[i][j - 1]) / (x[i + j] - x[i])# 构建插值多项式result = f[0][0]for j in range(1, n):term = f[0][j]for i in range(j):term *= (xi - x[i])result += termreturn result# 示例数据
x = [0.32, 0.34, 0.36]
y = [0.314567, 0.333487, 0.352274]
xi = 0.3367# 进行插值
interpolated_value = newton_interpolation(x, y, xi)
print("插值结果:", interpolated_value)

输出:

插值结果: 0.3303743620375

5. C语言实现

#include <stdio.h>double newton_interpolation(double x[], double y[], int n, double xi) {// 计算差分商double f[n][n];for (int i = 0; i < n; i++) {f[i][0] = y[i];}for (int j = 1; j < n; j++) {for (int i = 0; i < n - j; i++) {f[i][j] = (f[i+1][j-1] - f[i][j-1]) / (x[i+j] - x[i]);}}// 构建插值多项式double result = f[0][0];for (int j = 1; j < n; j++) {double term = f[0][j];for (int i = 0; i < j; i++) {term *= (xi - x[i]);}result += term;}return result;
}int main() {// 示例数据double x[] = {0.32, 0.34, 0.36};double y[] = {0.314567, 0.333487, 0.352274};int n = sizeof(x) / sizeof(x[0]);double xi = 0.3367;// 进行插值double interpolated_value = newton_interpolation(x, y, n, xi);printf("插值结果: %f\n", interpolated_value);return 0;
}

输出:

插值结果: 0.330374

  • Lagrange插值使用基于Lagrange多项式的方法来构建插值多项式.
    • Lagrange多项式是通过将每个数据点与一个基函数相乘,并使得在其他数据点上该基函数为零来构造的。最终的插值多项式是将所有这些基函数相加得到的。
    • Lagrange插值的优点是易于理解和实现,但在数据点较多时可能会导致计算复杂度较高的问题。
  • Newton插值使用差商的概念来构建插值多项式。
    • 差商是一个递归定义的概念,用于计算插值多项式中的系数。差商的计算可以通过表格形式进行,其中每一列都表示不同阶数的差商,通过计算差商,可以逐步构建插值多项式。
    • Newton插值的优点是在计算差商时可以重复使用已计算的差商值,从而减少计算量。

这篇关于【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456442

相关文章

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

EMLOG程序单页友链和标签增加美化

单页友联效果图: 标签页面效果图: 源码介绍 EMLOG单页友情链接和TAG标签,友链单页文件代码main{width: 58%;是设置宽度 自己把设置成与您的网站宽度一样,如果自适应就填写100%,TAG文件不用修改 安装方法:把Links.php和tag.php上传到网站根目录即可,访问 域名/Links.php、域名/tag.php 所有模板适用,代码就不粘贴出来,已经打

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

这些心智程序你安装了吗?

原文题目:《为什么聪明人也会做蠢事(四)》 心智程序 大脑有两个特征导致人类不够理性,一个是处理信息方面的缺陷,一个是心智程序出了问题。前者可以称为“认知吝啬鬼”,前几篇文章已经讨论了。本期主要讲心智程序这个方面。 心智程序这一概念由哈佛大学认知科学家大卫•帕金斯提出,指个体可以从记忆中提取出的规则、知识、程序和策略,以辅助我们决策判断和解决问题。如果把人脑比喻成计算机,那心智程序就是人脑的