独立成分分析ICA系列4:ICA的最优估计方法综述

2023-12-02 12:18

本文主要是介绍独立成分分析ICA系列4:ICA的最优估计方法综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ICA算法的研究可分为基于信息论准则的迭代估计方法基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。

1.最大似然估计算法

1.1 目标函数部分

假设信号Si有概率密度函数Ps(t),由于我们假定信号源是相互独立的,其实经过白化处理后就变成独立的了;那么在给定时刻的联合分布函数为:

知道了信号源的联合分布Ps(t),再由分解矩阵S=WX,可以得出信号x的联合分布函数。

其中|W|为W的行列式。

由于没有先验知识,只知道原信号之间特征独立,且最多有一个是高斯分布,所以没有办法确定Ps(t)的分布,所以我们选取一个概率密度函数Ps'(t)来近似估计Ps(t)。

概率密度函数由累积分布函数F(x)求导得到。

F(x)要满足两个性质:1单调递增;2值域在[0 1]范围

我们发现sigmoid函数的定义域是负无穷到正无穷,值域为0到1,缓慢递增的性质。基于sigmoid函数良好的性质,我们用sigmoid函数来近似估计F(x),通过求导得到Ps'(t)。

              

两函数图像如图:


如果我们预先知道Ps(t)的分布函数,那就不用假设了;但是在缺失的情况下,sigmoid函数大多数情况下能够起到不错的效果。由于Ps(t)是个对称函数,所以均值E[s]=0,那么E[x]=E[AS]=0,x的均值也是0。

知道了Ps(t),就剩下W了,在给定训练样本{Xi(Xi1,Xi2,........Xin),i=1,2....m个样本,样本的对数似然估计如下:

 (W=H')

T=m为独立同分布观测数据的样本数。最大化此似然函数就可获得关于参数W 的最佳估计。

1.2 优化部分(梯度下降算法)

接下来就是对W求导了,这里牵涉一个问题是对行列式|W|进行求导的方法,属于矩阵微积分

最终得到的求导后公式如下,logg'(s)的导数为1-2g(s):

当迭代求出W后,便可得到S=WX来还原出原始信号.

2.负熵最大的FastICA算法

2.1目标函数部分

2.1.1负熵判别准则

由极大熵原理可知,在方差相同的条件下,所有概率分布中,高斯分布的熵最大;因而我们可以利用熵来度量分布的非高斯性。因此通过度量分离结果的非高斯性,作为分离结果独立性的度量;当非高斯性达到最大时,表明已完成对各个分量的分离。因为FastICA算法以负熵最大作为一个搜寻方向,因此先讨论一下负熵判决准则。由信息论理论可知:在所有等方差的随机变量中,高斯变量的熵最大,因而我们可以利用熵来度量非高斯性,常用熵的修正形式,即负熵。

负熵的定义:   其中XG是和X具有相同协方差的随机变量,H()为变量的微分熵

微分熵定义:

联系极大熵原理,XG为高斯分布,所以J(X)>=0;当且仅当X本身也为高斯分布时=0;所以J(x)的值越大,证明X的非高斯性越强,

2.1.2负熵与独立性关系

假设n维随机变量X=[X1,X2……Xn],其互信息为I(X):

互信息即为:独立分布乘积分布与联合分布之间的负熵J(X),当Xi相互独立时,互信息为0;

由于计算J(X)需要联合分布函数和各个分量的分布函数,这个显然不切实际;所以采用非线性变换g(x)后的均值期望来近似替代。

由于Xi即为观测数据X分离后的独立变量Si,再由中心极限定理可知,若随机变量X有许多相互独立的随机变量信号源Si相互组合而成,则不论Si为何种分布,观测变量数据X比Si具有更强的高斯性,换言之Xi的非高斯性更强。所以,负熵J(X)的值越小,即此时的互信息I(X)越小,此时分离的变量Si独立性越好。

2.2 优化部分

快速ICA算法是找一个方向以便WX具有最大的非高斯性,也即最大的相互独立性;这里的独立性通过负熵来给出,通过均值近似估计来计算。这里通过白化处理,使W的范数为1,即使WX的方差估计为1;

优化过程推导比较复杂,公式太多!

实践中,FastICA算法中用的期望必须用它们的估计值代替。当然最好的估计是相应的样本平均。理想情况下,所有的有效数据都应该参与计算,但这会降低计算速度。所以通常用一部分样本的平均来估计,样本数目的多少对最后估计的精确度有很大影响。迭代中的样本点应该分别选取,假如收敛不理想的话,可以增加样本的数量。

这篇关于独立成分分析ICA系列4:ICA的最优估计方法综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445313

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步