独立成分分析ICA系列4:ICA的最优估计方法综述

2023-12-02 12:18

本文主要是介绍独立成分分析ICA系列4:ICA的最优估计方法综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ICA算法的研究可分为基于信息论准则的迭代估计方法基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。

1.最大似然估计算法

1.1 目标函数部分

假设信号Si有概率密度函数Ps(t),由于我们假定信号源是相互独立的,其实经过白化处理后就变成独立的了;那么在给定时刻的联合分布函数为:

知道了信号源的联合分布Ps(t),再由分解矩阵S=WX,可以得出信号x的联合分布函数。

其中|W|为W的行列式。

由于没有先验知识,只知道原信号之间特征独立,且最多有一个是高斯分布,所以没有办法确定Ps(t)的分布,所以我们选取一个概率密度函数Ps'(t)来近似估计Ps(t)。

概率密度函数由累积分布函数F(x)求导得到。

F(x)要满足两个性质:1单调递增;2值域在[0 1]范围

我们发现sigmoid函数的定义域是负无穷到正无穷,值域为0到1,缓慢递增的性质。基于sigmoid函数良好的性质,我们用sigmoid函数来近似估计F(x),通过求导得到Ps'(t)。

              

两函数图像如图:


如果我们预先知道Ps(t)的分布函数,那就不用假设了;但是在缺失的情况下,sigmoid函数大多数情况下能够起到不错的效果。由于Ps(t)是个对称函数,所以均值E[s]=0,那么E[x]=E[AS]=0,x的均值也是0。

知道了Ps(t),就剩下W了,在给定训练样本{Xi(Xi1,Xi2,........Xin),i=1,2....m个样本,样本的对数似然估计如下:

 (W=H')

T=m为独立同分布观测数据的样本数。最大化此似然函数就可获得关于参数W 的最佳估计。

1.2 优化部分(梯度下降算法)

接下来就是对W求导了,这里牵涉一个问题是对行列式|W|进行求导的方法,属于矩阵微积分

最终得到的求导后公式如下,logg'(s)的导数为1-2g(s):

当迭代求出W后,便可得到S=WX来还原出原始信号.

2.负熵最大的FastICA算法

2.1目标函数部分

2.1.1负熵判别准则

由极大熵原理可知,在方差相同的条件下,所有概率分布中,高斯分布的熵最大;因而我们可以利用熵来度量分布的非高斯性。因此通过度量分离结果的非高斯性,作为分离结果独立性的度量;当非高斯性达到最大时,表明已完成对各个分量的分离。因为FastICA算法以负熵最大作为一个搜寻方向,因此先讨论一下负熵判决准则。由信息论理论可知:在所有等方差的随机变量中,高斯变量的熵最大,因而我们可以利用熵来度量非高斯性,常用熵的修正形式,即负熵。

负熵的定义:   其中XG是和X具有相同协方差的随机变量,H()为变量的微分熵

微分熵定义:

联系极大熵原理,XG为高斯分布,所以J(X)>=0;当且仅当X本身也为高斯分布时=0;所以J(x)的值越大,证明X的非高斯性越强,

2.1.2负熵与独立性关系

假设n维随机变量X=[X1,X2……Xn],其互信息为I(X):

互信息即为:独立分布乘积分布与联合分布之间的负熵J(X),当Xi相互独立时,互信息为0;

由于计算J(X)需要联合分布函数和各个分量的分布函数,这个显然不切实际;所以采用非线性变换g(x)后的均值期望来近似替代。

由于Xi即为观测数据X分离后的独立变量Si,再由中心极限定理可知,若随机变量X有许多相互独立的随机变量信号源Si相互组合而成,则不论Si为何种分布,观测变量数据X比Si具有更强的高斯性,换言之Xi的非高斯性更强。所以,负熵J(X)的值越小,即此时的互信息I(X)越小,此时分离的变量Si独立性越好。

2.2 优化部分

快速ICA算法是找一个方向以便WX具有最大的非高斯性,也即最大的相互独立性;这里的独立性通过负熵来给出,通过均值近似估计来计算。这里通过白化处理,使W的范数为1,即使WX的方差估计为1;

优化过程推导比较复杂,公式太多!

实践中,FastICA算法中用的期望必须用它们的估计值代替。当然最好的估计是相应的样本平均。理想情况下,所有的有效数据都应该参与计算,但这会降低计算速度。所以通常用一部分样本的平均来估计,样本数目的多少对最后估计的精确度有很大影响。迭代中的样本点应该分别选取,假如收敛不理想的话,可以增加样本的数量。

这篇关于独立成分分析ICA系列4:ICA的最优估计方法综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445313

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四