独立成分分析ICA系列4:ICA的最优估计方法综述

2023-12-02 12:18

本文主要是介绍独立成分分析ICA系列4:ICA的最优估计方法综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ICA算法的研究可分为基于信息论准则的迭代估计方法基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。

1.最大似然估计算法

1.1 目标函数部分

假设信号Si有概率密度函数Ps(t),由于我们假定信号源是相互独立的,其实经过白化处理后就变成独立的了;那么在给定时刻的联合分布函数为:

知道了信号源的联合分布Ps(t),再由分解矩阵S=WX,可以得出信号x的联合分布函数。

其中|W|为W的行列式。

由于没有先验知识,只知道原信号之间特征独立,且最多有一个是高斯分布,所以没有办法确定Ps(t)的分布,所以我们选取一个概率密度函数Ps'(t)来近似估计Ps(t)。

概率密度函数由累积分布函数F(x)求导得到。

F(x)要满足两个性质:1单调递增;2值域在[0 1]范围

我们发现sigmoid函数的定义域是负无穷到正无穷,值域为0到1,缓慢递增的性质。基于sigmoid函数良好的性质,我们用sigmoid函数来近似估计F(x),通过求导得到Ps'(t)。

              

两函数图像如图:


如果我们预先知道Ps(t)的分布函数,那就不用假设了;但是在缺失的情况下,sigmoid函数大多数情况下能够起到不错的效果。由于Ps(t)是个对称函数,所以均值E[s]=0,那么E[x]=E[AS]=0,x的均值也是0。

知道了Ps(t),就剩下W了,在给定训练样本{Xi(Xi1,Xi2,........Xin),i=1,2....m个样本,样本的对数似然估计如下:

 (W=H')

T=m为独立同分布观测数据的样本数。最大化此似然函数就可获得关于参数W 的最佳估计。

1.2 优化部分(梯度下降算法)

接下来就是对W求导了,这里牵涉一个问题是对行列式|W|进行求导的方法,属于矩阵微积分

最终得到的求导后公式如下,logg'(s)的导数为1-2g(s):

当迭代求出W后,便可得到S=WX来还原出原始信号.

2.负熵最大的FastICA算法

2.1目标函数部分

2.1.1负熵判别准则

由极大熵原理可知,在方差相同的条件下,所有概率分布中,高斯分布的熵最大;因而我们可以利用熵来度量分布的非高斯性。因此通过度量分离结果的非高斯性,作为分离结果独立性的度量;当非高斯性达到最大时,表明已完成对各个分量的分离。因为FastICA算法以负熵最大作为一个搜寻方向,因此先讨论一下负熵判决准则。由信息论理论可知:在所有等方差的随机变量中,高斯变量的熵最大,因而我们可以利用熵来度量非高斯性,常用熵的修正形式,即负熵。

负熵的定义:   其中XG是和X具有相同协方差的随机变量,H()为变量的微分熵

微分熵定义:

联系极大熵原理,XG为高斯分布,所以J(X)>=0;当且仅当X本身也为高斯分布时=0;所以J(x)的值越大,证明X的非高斯性越强,

2.1.2负熵与独立性关系

假设n维随机变量X=[X1,X2……Xn],其互信息为I(X):

互信息即为:独立分布乘积分布与联合分布之间的负熵J(X),当Xi相互独立时,互信息为0;

由于计算J(X)需要联合分布函数和各个分量的分布函数,这个显然不切实际;所以采用非线性变换g(x)后的均值期望来近似替代。

由于Xi即为观测数据X分离后的独立变量Si,再由中心极限定理可知,若随机变量X有许多相互独立的随机变量信号源Si相互组合而成,则不论Si为何种分布,观测变量数据X比Si具有更强的高斯性,换言之Xi的非高斯性更强。所以,负熵J(X)的值越小,即此时的互信息I(X)越小,此时分离的变量Si独立性越好。

2.2 优化部分

快速ICA算法是找一个方向以便WX具有最大的非高斯性,也即最大的相互独立性;这里的独立性通过负熵来给出,通过均值近似估计来计算。这里通过白化处理,使W的范数为1,即使WX的方差估计为1;

优化过程推导比较复杂,公式太多!

实践中,FastICA算法中用的期望必须用它们的估计值代替。当然最好的估计是相应的样本平均。理想情况下,所有的有效数据都应该参与计算,但这会降低计算速度。所以通常用一部分样本的平均来估计,样本数目的多少对最后估计的精确度有很大影响。迭代中的样本点应该分别选取,假如收敛不理想的话,可以增加样本的数量。

这篇关于独立成分分析ICA系列4:ICA的最优估计方法综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445313

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp