马尔科夫链MCMC采样算法和LDA Gibbs Sampling

2023-12-01 22:32

本文主要是介绍马尔科夫链MCMC采样算法和LDA Gibbs Sampling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转载统计之都上的一篇关于lda gibbs采样算法的介绍

http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 

马氏链及其平稳分布

马氏链的数学定义很简单

P(Xt+1=x|Xt,Xt1,)=P(Xt+1=x|Xt)

也就是状态转移的概率只依赖于前一个状态。

我们先来看马氏链的一个具体的例子。社会学家经常把人按其经济状况分成3类:下层(lower-class)、中层(middle-class)、上层(upper-class),我们用1,2,3 分别代表这三个阶层。社会学家们发现决定一个人的收入阶层的最重要的因素就是其父母的收入阶层。如果一个人的收入属于下层类别,那么他的孩子属于下层收入的概率是 0.65, 属于中层收入的概率是 0.28, 属于上层收入的概率是 0.07。事实上,从父代到子代,收入阶层的变化的转移概率如下

table-1markov-transition

使用矩阵的表示方式,转移概率矩阵记为

P=0.650.150.120.280.670.360.070.180.52

假设当前这一代人处在下层、中层、上层的人的比例是概率分布向量  π0=[π0(1),π0(2),π0(3)] ,那么他们的子女的分布比例将是  π1=π0P , 他们的孙子代的分布比例将是  π2=π1P=π0P2 , ……, 第 n 代子孙的收入分布比例将是  πn=πn1P=π0Pn

假设初始概率分布为 π0=[0.21,0.68,0.11] ,则我们可以计算前 n 代人的分布状况如下

table-2

我们发现从第7代人开始,这个分布就稳定不变了,这个是偶然的吗?我们换一个初始概率分布 π0=[0.75,0.15,0.1]  试试看,继续计算前 n 代人的分布状况如下

table-3

我们发现,到第9代人的时候, 分布又收敛了。最为奇特的是,两次给定不同的初始概率分布,最终都收敛到概率分布  π=[0.286,0.489,0.225] ,也就是说收敛的行为和初始概率分布  π0  无关。这说明这个收敛行为主要是由概率转移矩阵 P 决定的。我们计算一下  Pn

P20=P21==P100==0.2860.2860.2860.4890.4890.4890.2250.2250.225

我们发现,当  n  足够大的时候,这个 Pn 矩阵的每一行都是稳定地收敛到 π=[0.286,0.489,0.225]  这个概率分布。自然的,这个收敛现象并非是我们这个马氏链独有的,而是绝大多数马氏链的共同行为,关于马氏链的收敛我们有如下漂亮的定理:

马氏链定理: 如果一个非周期马氏链具有转移概率矩阵 P ,且它的任何两个状态是连通的,那么  limnPnij  存在且与 i 无关,记  limnPnij=π(j) , 我们有

  1. limnPn=π(1)π(1)π(1)π(2)π(2)π(2)π(j)π(j)π(j)
  1.   π(j)=i=0π(i)Pij
  2.   π  是方程  πP=π  的唯一非负解

其中,

π=[π(1),π(2),,π(j),],i=0πi=1

π 称为马氏链的平稳分布。

这个马氏链的收敛定理非常重要,所有的 MCMC(Markov Chain Monte Carlo) 方法都是以这个定理作为理论基础的。 定理的证明相对复杂,一般的随机过程课本中也不给证明,所以我们就不用纠结它的证明了,直接用这个定理的结论就好了。我们对这个定理的内容做一些解释说明:

  1. 该定理中马氏链的状态不要求有限,可以是有无穷多个的;
  2. 定理中的“非周期“这个概念我们不打算解释了,因为我们遇到的绝大多数马氏链都是非周期的;
  3. 两个状态 i,j 是连通并非指 i  可以直接一步转移到 j ( Pij>0 ),而是指  i  可以通过有限的 n 步转移到达 j ( Pnij>0 )。马氏链的任何两个状态是连通的含义是指存在一个 n , 使得矩阵 Pn  中的任何一个元素的数值都大于零。
  4. 我们用  Xi  表示在马氏链上跳转第 i 步后所处的状态,如果  limnPnij=π(j) 存在,很容易证明以上定理的第二个结论。由于
    P(Xn+1=j)=i=0P(Xn=i)P(Xn+1=j|Xn=i)=i=0P(Xn=i)Pij

    上式两边取极限就得到  π(j)=i=0π(i)Pij

从初始概率分布  π0  出发,我们在马氏链上做状态转移,记 Xi 的概率分布为 πi , 则有

X0Xiπ0(x)πi(x),πi(x)=πi1(x)P=π0(x)Pn

由马氏链收敛的定理, 概率分布 πi(x) 将收敛到平稳分布  π(x) 。假设到第 n 步的时候马氏链收敛,则有
X0X1XnXn+1Xn+2π0(x)π1(x)πn(x)=π(x)π(x)π(x)

所以  Xn,Xn+1,Xn+2,π(x)  都是同分布的随机变量,当然他们并不独立。如果我们从一个具体的初始状态  x0  开始,沿着马氏链按照概率转移矩阵做跳转,那么我们得到一个转移序列  x0,x1,x2,xn,xn+1,  由于马氏链的收敛行为,  xn,xn+1,  都将是平稳分布  π(x)  的样本。

3.3 Markov Chain Monte Carlo

对于给定的概率分布 p(x) ,我们希望能有便捷的方式生成它对应的样本。由于马氏链能收敛到平稳分布, 于是一个很的漂亮想法是:如果我们能构造一个转移矩阵为 P 的马氏链,使得该马氏链的平稳分布恰好是 p(x) , 那么我们从任何一个初始状态 x0 出发沿着马氏链转移, 得到一个转移序列  x0,x1,x2,xn,xn+1, , 如果马氏链在第 n 步已经收敛了,于是我们就得到了  π(x)  的样本 xn,xn+1

这个绝妙的想法在1953年被 Metropolis想到了,为了研究粒子系统的平稳性质, Metropolis 考虑了物理学中常见的波尔兹曼分布的采样问题,首次提出了基于马氏链的蒙特卡罗方法,即Metropolis算法,并在最早的计算机上编程实现。Metropolis 算法是首个普适的采样方法,并启发了一系列 MCMC方法,所以人们把它视为随机模拟技术腾飞的起点。 Metropolis的这篇论文被收录在《统计学中的重大突破》中, Metropolis算法也被遴选为二十世纪的十个最重要的算法之一。

我们接下来介绍的MCMC 算法是 Metropolis 算法的一个改进变种,即常用的 Metropolis-Hastings 算法。由上一节的例子和定理我们看到了,马氏链的收敛性质主要由转移矩阵 P  决定, 所以基于马氏链做采样的关键问题是如何构造转移矩阵 P ,使得平稳分布恰好是我们要的分布 p(x) 。如何能做到这一点呢?我们主要使用如下的定理。

定理:[细致平稳条件] 如果非周期马氏链的转移矩阵 P 和分布 π(x)  满足

π(i)Pij=π(j)Pjifor alli,j(1)

则  π(x)  是马氏链的平稳分布,上式被称为细致平稳条件(detailed balance condition)。

其实这个定理是显而易见的,因为细致平稳条件的物理含义就是对于任何两个状态 i,j , 从  i  转移出去到 j  而丢失的概率质量,恰好会被从  j  转移回 i  的概率质量补充回来,所以状态 i 上的概率质量 π(i) 是稳定的,从而 π(x) 是马氏链的平稳分布。数学上的证明也很简单,由细致平稳条件可得

i=1π(i)Pij=i=1π(j)Pji=π(j)i=1Pji=π(j)πP=π

由于 π  是方程  πP=π 的解,所以 π 是平稳分布。

假设我们已经有一个转移矩阵为 Q 马氏链( q(i,j) 表示从状态  i 转移到状态 j 的概率,也可以写为  q(j|i) 或者 q(ij) ), 显然,通常情况下

p(i)q(i,j)p(j)q(j,i)
也就是细致平稳条件不成立,所以  p(x)  不太可能是这个马氏链的平稳分布。我们可否对马氏链做一个改造,使得细致平稳条件成立呢?譬如,我们引入一个  α(i,j) , 我们希望
p(i)q(i,j)α(i,j)=p(j)q(j,i)α(j,i)()(2)

取什么样的  α(i,j)  以上等式能成立呢?最简单的,按照对称性,我们可以取
α(i,j)=p(j)q(j,i)α(j,i)=p(i)q(i,j)

于是(*)式就成立了。所以有
p(i)q(i,j)α(i,j)Q(i,j)=p(j)q(j,i)α(j,i)Q(j,i)()(3)

于是我们把原来具有转移矩阵 Q 的一个很普通的马氏链,改造为了具有转移矩阵 Q 的马氏链,而  Q 恰好满足细致平稳条件,由此马氏链 Q 的平稳分布就是 p(x)

在改造  Q  的过程中引入的  α(i,j) 称为接受率,物理意义可以理解为在原来的马氏链上,从状态  i  以 q(i,j)  的概率转跳转到状态 j  的时候,我们以 α(i,j) 的概率接受这个转移,于是得到新的马氏链 Q 的转移概率为 q(i,j)α(i,j)

mcmc-transition马氏链转移和接受概率

假设我们已经有一个转移矩阵Q(对应元素为 q(i,j) ), 把以上的过程整理一下,我们就得到了如下的用于采样概率分布 p(x) 的算法。

mcmc-algo-1

上述过程中  p(x),q(x|y)  说的都是离散的情形,事实上即便这两个分布是连续的,以上算法仍然是有效,于是就得到更一般的连续概率分布  p(x) 的采样算法,而  q(x|y)  就是任意一个连续二元概率分布对应的条件分布。

以上的 MCMC 采样算法已经能很漂亮的工作了,不过它有一个小的问题:马氏链 Q 在转移的过程中的接受率  α(i,j)  可能偏小,这样采样过程中马氏链容易原地踏步,拒绝大量的跳转,这使得马氏链遍历所有的状态空间要花费太长的时间,收敛到平稳分布 p(x) 的速度太慢。有没有办法提升一些接受率呢?

假设  α(i,j)=0.1,α(j,i)=0.2 , 此时满足细致平稳条件,于是

p(i)q(i,j)×0.1=p(j)q(j,i)×0.2

上式两边扩大5倍,我们改写为
p(i)q(i,j)×0.5=p(j)q(j,i)×1

看,我们提高了接受率,而细致平稳条件并没有打破!这启发我们可以把细致平稳条件(**) 式中的 α(i,j),α(j,i)  同比例放大,使得两数中最大的一个放大到1,这样我们就提高了采样中的跳转接受率。所以我们可以取
α(i,j)=min{p(j)q(j,i)p(i)q(i,j),1}

于是,经过对上述MCMC 采样算法中接受率的微小改造,我们就得到了如下教科书中最常见的 Metropolis-Hastings 算法。

mcmc-algo-2

对于分布  p(x) ,我们构造转移矩阵  Q  使其满足细致平稳条件

p(x)Q(xy)=p(y)Q(yx)

此处  x  并不要求是一维的,对于高维空间的  p(x) ,如果满足细致平稳条件
p(x)Q(xy)=p(y)Q(yx)

那么以上的 Metropolis-Hastings 算法一样有效。

3.2 Gibbs Sampling

对于高维的情形,由于接受率  α 的存在(通常  α<1 ), 以上 Metropolis-Hastings 算法的效率不够高。能否找到一个转移矩阵Q使得接受率  α=1  呢?我们先看看二维的情形,假设有一个概率分布  p(x,y) , 考察 x 坐标相同的两个点 A(x1,y1),B(x1,y2) ,我们发现

p(x1,y1)p(y2|x1)=p(x1)p(y1|x1)p(y2|x1)p(x1,y2)p(y1|x1)=p(x1)p(y2|x1)p(y1|x1)

所以得到
p(x1,y1)p(y2|x1)=p(x1,y2)p(y1|x1)()(4)


p(A)p(y2|x1)=p(B)p(y1|x1)

基于以上等式,我们发现,在  x=x1  这条平行于  y 轴的直线上,如果使用条件分布  p(y|x1) 做为任何两个点之间的转移概率,那么任何两个点之间的转移满足细致平稳条件。同样的,如果我们在  y=y1  这条直线上任意取两个点  A(x1,y1),C(x2,y1) ,也有如下等式
p(A)p(x2|y1)=p(C)p(x1|y1).

gibbs-transition平面上马氏链转移矩阵的构造

于是我们可以如下构造平面上任意两点之间的转移概率矩阵Q

Q(AB)Q(AC)Q(AD)=p(yB|x1)=p(xC|y1)=0xA=xB=x1yA=yC=y1

有了如上的转移矩阵 Q, 我们很容易验证对平面上任意两点  X,Y , 满足细致平稳条件

p(X)Q(XY)=p(Y)Q(YX)

于是这个二维空间上的马氏链将收敛到平稳分布  p(x,y) 。而这个算法就称为 Gibbs Sampling 算法,是 Stuart Geman 和Donald Geman 这两兄弟于1984年提出来的,之所以叫做Gibbs Sampling 是因为他们研究了Gibbs random field, 这个算法在现代贝叶斯分析中占据重要位置。

gibbs-algo-1

two-stage-gibbsGibbs Sampling 算法中的马氏链转移

以上采样过程中,如图所示,马氏链的转移只是轮换的沿着坐标轴  x 轴和 y 轴做转移,于是得到样本  (x0,y0),(x0,y1),(x1,y1),(x1,y2),(x2,y2),  马氏链收敛后,最终得到的样本就是  p(x,y)  的样本,而收敛之前的阶段称为 burn-in period。额外说明一下,我们看到教科书上的 Gibbs Sampling 算法大都是坐标轴轮换采样的,但是这其实是不强制要求的。最一般的情形可以是,在 t 时刻,可以在 x 轴和 y 轴之间随机的选一个坐标轴,然后按条件概率做转移,马氏链也是一样收敛的。轮换两个坐标轴只是一种方便的形式。

以上的过程我们很容易推广到高维的情形,对于(***) 式,如果 x1  变为多维情形 x1 ,可以看出推导过程不变,所以细致平稳条件同样是成立的

p(x1,y1)p(y2|x1)=p(x1,y2)p(y1|x1)(5)

此时转移矩阵 Q 由条件分布  p(y|x1)  定义。上式只是说明了一根坐标轴的情形,和二维情形类似,很容易验证对所有坐标轴都有类似的结论。所以 n 维空间中对于概率分布  p(x1,x2,,xn)  可以如下定义转移矩阵

  1. 如果当前状态为 (x1,x2,,xn) ,马氏链转移的过程中,只能沿着坐标轴做转移。沿着  xi  这根坐标轴做转移的时候,转移概率由条件概率  p(xi|x1,,xi1,xi+1,,xn)  定义;
  2.  其它无法沿着单根坐标轴进行的跳转,转移概率都设置为 0。

于是我们可以把Gibbs Smapling 算法从采样二维的  p(x,y)  推广到采样 n  维的  p(x1,x2,,xn)

gibbs-algo-2

以上算法收敛后,得到的就是概率分布 p(x1,x2,,xn) 的样本,当然这些样本并不独立,但是我们此处要求的是采样得到的样本符合给定的概率分布,并不要求独立。同样的,在以上算法中,坐标轴轮换采样不是必须的,可以在坐标轴轮换中引入随机性,这时候转移矩阵  Q  中任何两个点的转移概率中就会包含坐标轴选择的概率,而在通常的 Gibbs Sampling 算法中,坐标轴轮换是一个确定性的过程,也就是在给定时刻 t ,在一根固定的坐标轴上转移的概率是1。

这篇关于马尔科夫链MCMC采样算法和LDA Gibbs Sampling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442934

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/