线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码

2023-12-01 09:01

本文主要是介绍线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Jacobi 迭代法

#include <iostream>
#include <cmath>
#include <vector>using namespace std;// 定义方程组的系数矩阵和常数向量
vector<vector<double>> A = {{20, 2, 3},{1, 8, 1},{2, -3, 15}};
vector<double> b = {24, 12, 30};// 定义迭代次数和精度阈值
int maxIterations = 100;
double epsilon = 5e-5;
int iterations = 0;
// 雅可比迭代函数
vector<double> jacobiIteration(const vector<vector<double>>& A, const vector<double>& b, const vector<double>& x0) {int n = A.size();vector<double> x(x0);  // 初始解的近似值for (int k = 0; k < maxIterations; k++) {iterations++;vector<double> x_new(n, 0);for (int i = 0; i < n; i++) {double sum = 0;for (int j = 0; j < n; j++) {if (j != i) {sum += A[i][j] * x[j];}}x_new[i] = (b[i] - sum) / A[i][i];}// 判断是否满足终止条件double diff = 0;for (int i = 0; i < n; i++) {diff += abs(x_new[i] - x[i]);}if (diff < epsilon) {break;}// 更新解的近似值x = x_new;}return x;
}int main() {int n = A.size();vector<double> x0(n, 0);  // 初始解的近似值vector<double> x = jacobiIteration(A, b, x0);cout << "Solution: \n";for (int i = 0; i < n; i++) {cout << "x" << i+1 << " = " << x[i] << "\n";}cout << endl;cout << "iterations = " << iterations << '\n';return 0;
}

Gauss-Seidel 迭代法

#include <iostream>
#include <cmath>#define N 3 // 线性方程组的未知数个数
#define MAX_ITERATIONS 100 // 最大迭代次数
#define EPSILON 0.00005 // 迭代停止的精度void gaussSeidel(double coef[N][N], double b[N], double x[N]) {double x_new[N];// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum1 = 0;for (int j = 0; j < i; j++) {sum1 += coef[i][j] * x_new[j];}double sum2 = 0;for (int j = i + 1; j < N; j++) {sum2 += coef[i][j] * x[j];}x_new[i] = (b[i] - sum1 - sum2) / coef[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}if (iterations < MAX_ITERATIONS) {std::cout << "Converged in " << iterations << " iterations." << std::endl;} else {std::cout << "Did not converge within the maximum number of iterations." << std::endl;}
}int main() {double coef[N][N] = {{20, 2, 3}, {1, 8, 1}, {2, -3, 15}};double b[N] = {24, 12, 30};double x[N];gaussSeidel(coef, b, x);std::cout << "Solution:" << std::endl;for (int i = 0; i < N; i++) {std::cout << "x" << i << " = " << x[i] << std::endl;}return 0;
}

Jacobi 迭代法与Gauss-Seidel 迭代法的比较

#include <iostream>
#include <vector>
#include <cmath>#define N 3 // 线性方程组的未知数个数
#define MAX_ITERATIONS 100 // 最大迭代次数
#define EPSILON 0.00005 // 迭代停止的精度// 高斯-赛德尔迭代法
int gaussSeidel(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) {std::vector<double> x_new(N);// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum1 = 0;for (int j = 0; j < i; j++) {sum1 += A[i][j] * x_new[j];}double sum2 = 0;for (int j = i + 1; j < N; j++) {sum2 += A[i][j] * x[j];}x_new[i] = (b[i] - sum1 - sum2) / A[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}return iterations;
}// 雅可比迭代法
int jacobi(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) {std::vector<double> x_new(N);// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum = 0;for (int j = 0; j < N; j++) {if (j != i) {sum += A[i][j] * x[j];}}x_new[i] = (b[i] - sum) / A[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}return iterations;
}int main() {std::vector<std::vector<double>> A = {{20, 2, 3}, {1, 8, 1}, {2, -3, 15}};std::vector<double> b = {24, 12, 30};std::vector<double> x(N);int gaussSeidelIterations = gaussSeidel(A, b, x);int jacobiIterations = jacobi(A, b, x);std::cout << "Gauss-Seidel iterations: " << gaussSeidelIterations << std::endl;std::cout << "Jacobi iterations: " << jacobiIterations << std::endl;return 0;
}

这篇关于线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440537

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim