线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码

2023-12-01 09:01

本文主要是介绍线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Jacobi 迭代法

#include <iostream>
#include <cmath>
#include <vector>using namespace std;// 定义方程组的系数矩阵和常数向量
vector<vector<double>> A = {{20, 2, 3},{1, 8, 1},{2, -3, 15}};
vector<double> b = {24, 12, 30};// 定义迭代次数和精度阈值
int maxIterations = 100;
double epsilon = 5e-5;
int iterations = 0;
// 雅可比迭代函数
vector<double> jacobiIteration(const vector<vector<double>>& A, const vector<double>& b, const vector<double>& x0) {int n = A.size();vector<double> x(x0);  // 初始解的近似值for (int k = 0; k < maxIterations; k++) {iterations++;vector<double> x_new(n, 0);for (int i = 0; i < n; i++) {double sum = 0;for (int j = 0; j < n; j++) {if (j != i) {sum += A[i][j] * x[j];}}x_new[i] = (b[i] - sum) / A[i][i];}// 判断是否满足终止条件double diff = 0;for (int i = 0; i < n; i++) {diff += abs(x_new[i] - x[i]);}if (diff < epsilon) {break;}// 更新解的近似值x = x_new;}return x;
}int main() {int n = A.size();vector<double> x0(n, 0);  // 初始解的近似值vector<double> x = jacobiIteration(A, b, x0);cout << "Solution: \n";for (int i = 0; i < n; i++) {cout << "x" << i+1 << " = " << x[i] << "\n";}cout << endl;cout << "iterations = " << iterations << '\n';return 0;
}

Gauss-Seidel 迭代法

#include <iostream>
#include <cmath>#define N 3 // 线性方程组的未知数个数
#define MAX_ITERATIONS 100 // 最大迭代次数
#define EPSILON 0.00005 // 迭代停止的精度void gaussSeidel(double coef[N][N], double b[N], double x[N]) {double x_new[N];// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum1 = 0;for (int j = 0; j < i; j++) {sum1 += coef[i][j] * x_new[j];}double sum2 = 0;for (int j = i + 1; j < N; j++) {sum2 += coef[i][j] * x[j];}x_new[i] = (b[i] - sum1 - sum2) / coef[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}if (iterations < MAX_ITERATIONS) {std::cout << "Converged in " << iterations << " iterations." << std::endl;} else {std::cout << "Did not converge within the maximum number of iterations." << std::endl;}
}int main() {double coef[N][N] = {{20, 2, 3}, {1, 8, 1}, {2, -3, 15}};double b[N] = {24, 12, 30};double x[N];gaussSeidel(coef, b, x);std::cout << "Solution:" << std::endl;for (int i = 0; i < N; i++) {std::cout << "x" << i << " = " << x[i] << std::endl;}return 0;
}

Jacobi 迭代法与Gauss-Seidel 迭代法的比较

#include <iostream>
#include <vector>
#include <cmath>#define N 3 // 线性方程组的未知数个数
#define MAX_ITERATIONS 100 // 最大迭代次数
#define EPSILON 0.00005 // 迭代停止的精度// 高斯-赛德尔迭代法
int gaussSeidel(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) {std::vector<double> x_new(N);// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum1 = 0;for (int j = 0; j < i; j++) {sum1 += A[i][j] * x_new[j];}double sum2 = 0;for (int j = i + 1; j < N; j++) {sum2 += A[i][j] * x[j];}x_new[i] = (b[i] - sum1 - sum2) / A[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}return iterations;
}// 雅可比迭代法
int jacobi(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) {std::vector<double> x_new(N);// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum = 0;for (int j = 0; j < N; j++) {if (j != i) {sum += A[i][j] * x[j];}}x_new[i] = (b[i] - sum) / A[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}return iterations;
}int main() {std::vector<std::vector<double>> A = {{20, 2, 3}, {1, 8, 1}, {2, -3, 15}};std::vector<double> b = {24, 12, 30};std::vector<double> x(N);int gaussSeidelIterations = gaussSeidel(A, b, x);int jacobiIterations = jacobi(A, b, x);std::cout << "Gauss-Seidel iterations: " << gaussSeidelIterations << std::endl;std::cout << "Jacobi iterations: " << jacobiIterations << std::endl;return 0;
}

这篇关于线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440537

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解