【端到端可微1】端到端的训练,使用反向传播,要求过程可微分

2023-11-30 10:52

本文主要是介绍【端到端可微1】端到端的训练,使用反向传播,要求过程可微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景
  • 想法: Weighted least-squares fitting
  • 方法: Backpropagating through the fitting procedure.
  • 温习之前的基础
    • 前向传播
    • 反向传播
  • 总结

背景

想做一个端到端训练的模型,将最小二乘嵌入其中。因此有了这系列文章。

想法: Weighted least-squares fitting

我们想把“最小二乘模块”嵌入深度学习中,将其作为一份子参与端到端的训练

我们设计了加权最小二乘问题。设W∈Rm×m是包含每个观测的权值wi的对角矩阵。在我们的框架中,观测结果将对应于图像参考框架中的固定(x, y)坐标,权重将由基于图像的深度网络生成。加权最小二乘问题是

在这里插入图片描述

方法: Backpropagating through the fitting procedure.

我们深度学习最后的卷积输出特征图,我们定义这个特征图为“一个加权像素坐标列表(xi, yi, wi)”。其中坐标(xi, yi)是固定的,而加权wi是由一个基于输入图像的深层网络生成的。我们可以利用这些值构造矩阵X, Y和w,求解加权最小二乘问题,通过加权像素坐标得到最佳拟合曲线的参数β。

与其将拟合过程作为一个单独的后处理步骤,我们可以反向传播它,并在兴趣β参数上应用一个损失函数,而不是间接地在网络产生的权值映射上。通过这种方式,我们获得了一个强大的工具,可以在深度学习框架中以端到端方式解决最小二乘的问题。

注意,方程3只涉及可微矩阵运算。因此,可以计算β对W的导数,从而也可以计算深度网络的参数。通过矩阵变换反向传播的细节已经很好地理解了。我们使用Cholesky分解推导这个问题的梯度。

β对W的导数表示为dβ/dW。这里的β和W都是变量,dβ/dW表示β对W的变化率。在求解这个导数时,我们需要将β作为独立变量,W作为因变量,然后对W进行求导。

具体的求导方法取决于β和W的具体形式和关系。如果β和W都是标量变量,那么可以直接对W求导得到dβ/dW。如果β和W是向量或矩阵变量,那么我们需要对每个元素或矩阵元素分别求导,得到一个与W相同形状的导数矩阵

需要注意的是,在求解dβ/dW时,我们通常将其他变量视为常数,即假设它们不随W的变化而变化。这是因为我们只关注β对W的导数,而不考虑其他变量对此导数的影响。
总之,β对W的导数表示为dβ/dW,具体的求导方法取决于β和W的形式和关系。

温习之前的基础

1、2月10日 感知器+浅层神经网络+反向传播+tensorflow
2、链式法则,论文:Introduction to Gradient Descent and Backpropagation Algorithm

在这里插入图片描述
在这里插入图片描述

BP 算法是一种参数学习方法,一般分为两个过程:前向传播(求误差),反向传播(误差回传)。

那么什么是前向传播、反向传播呢?这里先说结论:前向传播是为反向传播准备好要用到的数值,反向传播本质上是一种求梯度的高效方法。

求梯度是为了什么呢?就是为了更新模型的参数(权重 W 和偏置 b)。

所有参数值随机初始化(论文乱写一通),前向传播(提交论文),误差函数(审稿),反向传播(审稿人:你这不行,改!),参数更新(修改论文),前向传播,…;反反复复,论文发表(模型训练完毕)。

前向传播

在正式介绍前向传播前,先简单介绍计算图(Computational Graph)的概念, f ( x , y , z ) = ( x + y ) ∗ z 的计算图
在这里插入图片描述

分别赋值 x = − 2 , y = 5 , z = − 4 ,从计算图的左边开始,数据开始流动,依次计算出 q 、 f 。

最终得到计算图中那 6 个绿色的数字,这就是前向传播的结果。

反向传播

我们说了,反向传播本质上是一种求梯度的高效方法。

总结

这系列文章将逐步完成一个端到端可微的模型,挖个坑。
项目开启时间:2023-07-04

但是一直拖到了11月30,最近同事讨论问题才想起来继续实施。

这篇关于【端到端可微1】端到端的训练,使用反向传播,要求过程可微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/436745

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa