【端到端可微1】端到端的训练,使用反向传播,要求过程可微分

2023-11-30 10:52

本文主要是介绍【端到端可微1】端到端的训练,使用反向传播,要求过程可微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景
  • 想法: Weighted least-squares fitting
  • 方法: Backpropagating through the fitting procedure.
  • 温习之前的基础
    • 前向传播
    • 反向传播
  • 总结

背景

想做一个端到端训练的模型,将最小二乘嵌入其中。因此有了这系列文章。

想法: Weighted least-squares fitting

我们想把“最小二乘模块”嵌入深度学习中,将其作为一份子参与端到端的训练

我们设计了加权最小二乘问题。设W∈Rm×m是包含每个观测的权值wi的对角矩阵。在我们的框架中,观测结果将对应于图像参考框架中的固定(x, y)坐标,权重将由基于图像的深度网络生成。加权最小二乘问题是

在这里插入图片描述

方法: Backpropagating through the fitting procedure.

我们深度学习最后的卷积输出特征图,我们定义这个特征图为“一个加权像素坐标列表(xi, yi, wi)”。其中坐标(xi, yi)是固定的,而加权wi是由一个基于输入图像的深层网络生成的。我们可以利用这些值构造矩阵X, Y和w,求解加权最小二乘问题,通过加权像素坐标得到最佳拟合曲线的参数β。

与其将拟合过程作为一个单独的后处理步骤,我们可以反向传播它,并在兴趣β参数上应用一个损失函数,而不是间接地在网络产生的权值映射上。通过这种方式,我们获得了一个强大的工具,可以在深度学习框架中以端到端方式解决最小二乘的问题。

注意,方程3只涉及可微矩阵运算。因此,可以计算β对W的导数,从而也可以计算深度网络的参数。通过矩阵变换反向传播的细节已经很好地理解了。我们使用Cholesky分解推导这个问题的梯度。

β对W的导数表示为dβ/dW。这里的β和W都是变量,dβ/dW表示β对W的变化率。在求解这个导数时,我们需要将β作为独立变量,W作为因变量,然后对W进行求导。

具体的求导方法取决于β和W的具体形式和关系。如果β和W都是标量变量,那么可以直接对W求导得到dβ/dW。如果β和W是向量或矩阵变量,那么我们需要对每个元素或矩阵元素分别求导,得到一个与W相同形状的导数矩阵

需要注意的是,在求解dβ/dW时,我们通常将其他变量视为常数,即假设它们不随W的变化而变化。这是因为我们只关注β对W的导数,而不考虑其他变量对此导数的影响。
总之,β对W的导数表示为dβ/dW,具体的求导方法取决于β和W的形式和关系。

温习之前的基础

1、2月10日 感知器+浅层神经网络+反向传播+tensorflow
2、链式法则,论文:Introduction to Gradient Descent and Backpropagation Algorithm

在这里插入图片描述
在这里插入图片描述

BP 算法是一种参数学习方法,一般分为两个过程:前向传播(求误差),反向传播(误差回传)。

那么什么是前向传播、反向传播呢?这里先说结论:前向传播是为反向传播准备好要用到的数值,反向传播本质上是一种求梯度的高效方法。

求梯度是为了什么呢?就是为了更新模型的参数(权重 W 和偏置 b)。

所有参数值随机初始化(论文乱写一通),前向传播(提交论文),误差函数(审稿),反向传播(审稿人:你这不行,改!),参数更新(修改论文),前向传播,…;反反复复,论文发表(模型训练完毕)。

前向传播

在正式介绍前向传播前,先简单介绍计算图(Computational Graph)的概念, f ( x , y , z ) = ( x + y ) ∗ z 的计算图
在这里插入图片描述

分别赋值 x = − 2 , y = 5 , z = − 4 ,从计算图的左边开始,数据开始流动,依次计算出 q 、 f 。

最终得到计算图中那 6 个绿色的数字,这就是前向传播的结果。

反向传播

我们说了,反向传播本质上是一种求梯度的高效方法。

总结

这系列文章将逐步完成一个端到端可微的模型,挖个坑。
项目开启时间:2023-07-04

但是一直拖到了11月30,最近同事讨论问题才想起来继续实施。

这篇关于【端到端可微1】端到端的训练,使用反向传播,要求过程可微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/436745

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁