【端到端可微1】端到端的训练,使用反向传播,要求过程可微分

2023-11-30 10:52

本文主要是介绍【端到端可微1】端到端的训练,使用反向传播,要求过程可微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景
  • 想法: Weighted least-squares fitting
  • 方法: Backpropagating through the fitting procedure.
  • 温习之前的基础
    • 前向传播
    • 反向传播
  • 总结

背景

想做一个端到端训练的模型,将最小二乘嵌入其中。因此有了这系列文章。

想法: Weighted least-squares fitting

我们想把“最小二乘模块”嵌入深度学习中,将其作为一份子参与端到端的训练

我们设计了加权最小二乘问题。设W∈Rm×m是包含每个观测的权值wi的对角矩阵。在我们的框架中,观测结果将对应于图像参考框架中的固定(x, y)坐标,权重将由基于图像的深度网络生成。加权最小二乘问题是

在这里插入图片描述

方法: Backpropagating through the fitting procedure.

我们深度学习最后的卷积输出特征图,我们定义这个特征图为“一个加权像素坐标列表(xi, yi, wi)”。其中坐标(xi, yi)是固定的,而加权wi是由一个基于输入图像的深层网络生成的。我们可以利用这些值构造矩阵X, Y和w,求解加权最小二乘问题,通过加权像素坐标得到最佳拟合曲线的参数β。

与其将拟合过程作为一个单独的后处理步骤,我们可以反向传播它,并在兴趣β参数上应用一个损失函数,而不是间接地在网络产生的权值映射上。通过这种方式,我们获得了一个强大的工具,可以在深度学习框架中以端到端方式解决最小二乘的问题。

注意,方程3只涉及可微矩阵运算。因此,可以计算β对W的导数,从而也可以计算深度网络的参数。通过矩阵变换反向传播的细节已经很好地理解了。我们使用Cholesky分解推导这个问题的梯度。

β对W的导数表示为dβ/dW。这里的β和W都是变量,dβ/dW表示β对W的变化率。在求解这个导数时,我们需要将β作为独立变量,W作为因变量,然后对W进行求导。

具体的求导方法取决于β和W的具体形式和关系。如果β和W都是标量变量,那么可以直接对W求导得到dβ/dW。如果β和W是向量或矩阵变量,那么我们需要对每个元素或矩阵元素分别求导,得到一个与W相同形状的导数矩阵

需要注意的是,在求解dβ/dW时,我们通常将其他变量视为常数,即假设它们不随W的变化而变化。这是因为我们只关注β对W的导数,而不考虑其他变量对此导数的影响。
总之,β对W的导数表示为dβ/dW,具体的求导方法取决于β和W的形式和关系。

温习之前的基础

1、2月10日 感知器+浅层神经网络+反向传播+tensorflow
2、链式法则,论文:Introduction to Gradient Descent and Backpropagation Algorithm

在这里插入图片描述
在这里插入图片描述

BP 算法是一种参数学习方法,一般分为两个过程:前向传播(求误差),反向传播(误差回传)。

那么什么是前向传播、反向传播呢?这里先说结论:前向传播是为反向传播准备好要用到的数值,反向传播本质上是一种求梯度的高效方法。

求梯度是为了什么呢?就是为了更新模型的参数(权重 W 和偏置 b)。

所有参数值随机初始化(论文乱写一通),前向传播(提交论文),误差函数(审稿),反向传播(审稿人:你这不行,改!),参数更新(修改论文),前向传播,…;反反复复,论文发表(模型训练完毕)。

前向传播

在正式介绍前向传播前,先简单介绍计算图(Computational Graph)的概念, f ( x , y , z ) = ( x + y ) ∗ z 的计算图
在这里插入图片描述

分别赋值 x = − 2 , y = 5 , z = − 4 ,从计算图的左边开始,数据开始流动,依次计算出 q 、 f 。

最终得到计算图中那 6 个绿色的数字,这就是前向传播的结果。

反向传播

我们说了,反向传播本质上是一种求梯度的高效方法。

总结

这系列文章将逐步完成一个端到端可微的模型,挖个坑。
项目开启时间:2023-07-04

但是一直拖到了11月30,最近同事讨论问题才想起来继续实施。

这篇关于【端到端可微1】端到端的训练,使用反向传播,要求过程可微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/436745

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain