玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM

2023-11-30 05:12

本文主要是介绍玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

😍 这篇主要简单记录一些调参实践,无聊时会不定期更新~

在这里插入图片描述

文章目录

  • 0、学习率与batch_size判断
  • 1、Epoch数判断
  • 2、判断模型架构是否有问题
  • 3、大模型 - 计算量、模型、和数据大小的关系
  • 4、大模型调参相关论文经验总结
  • 5、训练时模型的保存

0、学习率与batch_size判断

  • batch_size: 这不用多说,一般按2的指数设置如:2、4、8、16…。设多大基本看你的显卡显存能不能hold得住咯。
  • 学习率: 常用的一些自适应学习率调整策略如:linear_with_warmup、cosine_with_warmup。现在像一些大模型如ChatGLM、LLaMA等的训练里基本都用的cosine。学习率基本就是:3e-5, 4e-5, 5e-5…这样调。
  • 学习率与batch_size的关系: 一般来说,batch_size的大小一般与学习率的大小成正比。batch_size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch_size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

1、Epoch数判断

  • 1、观察训练集和验证集的损失函数(loss)和准确率(accuracy)的变化曲线,如果训练集的指标持续下降或上升,而验证集的指标开始出现反向变化或者停滞不动,那么可能就是过拟合或者欠拟合的现象,需要及时停止训练或者调整参数。【😄提一小点:有时候玄学在于过拟合不一定会导致模型效果变差, 有时反而相反。可以参考instructgpt论文,或者自己在数学、代码等任务试验一下,往往过拟合效果是更好的】
  • 2、使用预训练模型(pre-trained model),比如BERT,GPT等,在大规模的数据集上进行了长时间的训练,已经学习到了很多通用的特征和知识,所以在微调的时候只需要少量的epoch就可以达到很好的效果。
  • 3、Early Stopping,即在每个epoch结束后,用验证集评估模型的性能,如果性能没有提升或者下降了一定次数,就停止训练,并保存最佳的模型。

⭐似乎在一些预训练大模型上开始微调,基本就是wamup用5个左右的epoch;cosine schedule用10个左右的epoch尝试。咱也不知对不对,我以往是这样搞的。自己可以变大变小试试。

2、判断模型架构是否有问题

⭐ 我觉得可以用部分数据,训多几个epoch,看看模型会不会过拟合,如果会,那模型大概没啥问题。

3、大模型 - 计算量、模型、和数据大小的关系

在大模型的研发中,通常会有下面一些需求:

  • 计划训练一个10B的模型,想知道至少需要多大的数据?
  • 收集到了1T的数据,想知道能训练一个多大的模型?
  • 老板准备1个月后开发布会,给的资源是100张A100,应该用多少数据训多大的模型效果最好?
  • 老板对现在10B的模型不满意,想知道扩大到100B模型的效果能提升到多少?

以上这些问题都可以基于Scaling Law的理论进行回答。本文是阅读了一系列 Scaling Law的文章后的整理和思考,包括Scaling Law的概念和推导以及反Scaling Law的场景。
⭐ 解析大模型中的Scaling Law: https://zhuanlan.zhihu.com/p/667489780

4、大模型调参相关论文经验总结

下面是知乎清华老哥的总结:

  • 最近在做一些大模型微调的工作。开始的时候比较头疼怎么调超参数,毕竟不能像小模型那样疯狂跑实验,看结果积累经验了,一是计算量太大,二是大模型比较不好评估(毕竟让模型做选择题不能准确的评估性能,一些垂类领域也很难搞到相关测试集,大部分在微调的工程师都是在调垂类模型吧:)。
  • 其次,如果用GPT4评估又涉及到数据隐私问题,同时下边列举的一篇文章显示,GPT4更倾向于给句子长的、回答更多样性的答案更高的分数,有时候也是不准的。。。)。最后也只能多看看微调/训练相关的论文借鉴借鉴经验了。下边会列出一些最近看的文章,给出重要结论以及我的一些个人观点,如果有感兴趣就去精读一下,希望能帮助到一些微调er,本文章不定期更新。。。
  • ⭐ 文章链接:https://www.zhihu.com/question/607397171

5、训练时模型的保存

  • 一般来说我们会搞个验证集,设置一个评估指标,训练到多少个step或是1个epoch时,测一遍验证集,每次保存在验证集上最优指标对应的模型。
  • 现在的一些大模型训练,基本在训练时不搞验证集,而是看train loss来保存最优模型。最常见的是每隔多少个step,保存一次模型checkpoint。最后训练结束后,再根据loss或是各个checkpoint在验证集的表现来挑个最优模型。

这篇关于玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435749

相关文章

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

mac安装nvm(node.js)多版本管理实践步骤

《mac安装nvm(node.js)多版本管理实践步骤》:本文主要介绍mac安装nvm(node.js)多版本管理的相关资料,NVM是一个用于管理多个Node.js版本的命令行工具,它允许开发者在... 目录NVM功能简介MAC安装实践一、下载nvm二、安装nvm三、安装node.js总结NVM功能简介N

Spring Boot 3 整合 Spring Cloud Gateway实践过程

《SpringBoot3整合SpringCloudGateway实践过程》本文介绍了如何使用SpringCloudAlibaba2023.0.0.0版本构建一个微服务网关,包括统一路由、限... 目录引子为什么需要微服务网关实践1.统一路由2.限流防刷3.登录鉴权小结引子当前微服务架构已成为中大型系统的标