玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM

2023-11-30 05:12

本文主要是介绍玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

😍 这篇主要简单记录一些调参实践,无聊时会不定期更新~

在这里插入图片描述

文章目录

  • 0、学习率与batch_size判断
  • 1、Epoch数判断
  • 2、判断模型架构是否有问题
  • 3、大模型 - 计算量、模型、和数据大小的关系
  • 4、大模型调参相关论文经验总结
  • 5、训练时模型的保存

0、学习率与batch_size判断

  • batch_size: 这不用多说,一般按2的指数设置如:2、4、8、16…。设多大基本看你的显卡显存能不能hold得住咯。
  • 学习率: 常用的一些自适应学习率调整策略如:linear_with_warmup、cosine_with_warmup。现在像一些大模型如ChatGLM、LLaMA等的训练里基本都用的cosine。学习率基本就是:3e-5, 4e-5, 5e-5…这样调。
  • 学习率与batch_size的关系: 一般来说,batch_size的大小一般与学习率的大小成正比。batch_size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch_size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

1、Epoch数判断

  • 1、观察训练集和验证集的损失函数(loss)和准确率(accuracy)的变化曲线,如果训练集的指标持续下降或上升,而验证集的指标开始出现反向变化或者停滞不动,那么可能就是过拟合或者欠拟合的现象,需要及时停止训练或者调整参数。【😄提一小点:有时候玄学在于过拟合不一定会导致模型效果变差, 有时反而相反。可以参考instructgpt论文,或者自己在数学、代码等任务试验一下,往往过拟合效果是更好的】
  • 2、使用预训练模型(pre-trained model),比如BERT,GPT等,在大规模的数据集上进行了长时间的训练,已经学习到了很多通用的特征和知识,所以在微调的时候只需要少量的epoch就可以达到很好的效果。
  • 3、Early Stopping,即在每个epoch结束后,用验证集评估模型的性能,如果性能没有提升或者下降了一定次数,就停止训练,并保存最佳的模型。

⭐似乎在一些预训练大模型上开始微调,基本就是wamup用5个左右的epoch;cosine schedule用10个左右的epoch尝试。咱也不知对不对,我以往是这样搞的。自己可以变大变小试试。

2、判断模型架构是否有问题

⭐ 我觉得可以用部分数据,训多几个epoch,看看模型会不会过拟合,如果会,那模型大概没啥问题。

3、大模型 - 计算量、模型、和数据大小的关系

在大模型的研发中,通常会有下面一些需求:

  • 计划训练一个10B的模型,想知道至少需要多大的数据?
  • 收集到了1T的数据,想知道能训练一个多大的模型?
  • 老板准备1个月后开发布会,给的资源是100张A100,应该用多少数据训多大的模型效果最好?
  • 老板对现在10B的模型不满意,想知道扩大到100B模型的效果能提升到多少?

以上这些问题都可以基于Scaling Law的理论进行回答。本文是阅读了一系列 Scaling Law的文章后的整理和思考,包括Scaling Law的概念和推导以及反Scaling Law的场景。
⭐ 解析大模型中的Scaling Law: https://zhuanlan.zhihu.com/p/667489780

4、大模型调参相关论文经验总结

下面是知乎清华老哥的总结:

  • 最近在做一些大模型微调的工作。开始的时候比较头疼怎么调超参数,毕竟不能像小模型那样疯狂跑实验,看结果积累经验了,一是计算量太大,二是大模型比较不好评估(毕竟让模型做选择题不能准确的评估性能,一些垂类领域也很难搞到相关测试集,大部分在微调的工程师都是在调垂类模型吧:)。
  • 其次,如果用GPT4评估又涉及到数据隐私问题,同时下边列举的一篇文章显示,GPT4更倾向于给句子长的、回答更多样性的答案更高的分数,有时候也是不准的。。。)。最后也只能多看看微调/训练相关的论文借鉴借鉴经验了。下边会列出一些最近看的文章,给出重要结论以及我的一些个人观点,如果有感兴趣就去精读一下,希望能帮助到一些微调er,本文章不定期更新。。。
  • ⭐ 文章链接:https://www.zhihu.com/question/607397171

5、训练时模型的保存

  • 一般来说我们会搞个验证集,设置一个评估指标,训练到多少个step或是1个epoch时,测一遍验证集,每次保存在验证集上最优指标对应的模型。
  • 现在的一些大模型训练,基本在训练时不搞验证集,而是看train loss来保存最优模型。最常见的是每隔多少个step,保存一次模型checkpoint。最后训练结束后,再根据loss或是各个checkpoint在验证集的表现来挑个最优模型。

这篇关于玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435749

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke