对坐标的曲面积分@第二类曲面积分

2023-11-28 22:04
文章标签 坐标 积分 曲面 第二类

本文主要是介绍对坐标的曲面积分@第二类曲面积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • abstract
    • 曲面基本概念
      • 双侧曲面
      • 有向曲面
      • 曲面区域投影
      • 平面区域投影
    • 对坐标的曲面积分
      • 流向曲面一侧的流量
        • 简单情形
      • 一般情形
        • 小结
      • 对坐标的曲面积分
      • 其他定义
      • 第二类曲面积分的存在性
      • 并写和简写
      • 流量用第二类曲面积分描述
    • 性质
    • 对坐标的曲面积分的计算
      • 公式的其他形式
      • 应用

abstract

  • 对坐标的曲面积分@第二类曲面积分

曲面基本概念

双侧曲面

  • 通常,曲面是双侧的,例如
    • 不闭合的曲面 z = z ( x , y ) z=z(x,y) z=z(x,y)上侧和下侧之分(按照惯例,假定 z z z轴铅直向上)
    • 而一张包围某一空间区域的闭曲面,有外侧和内侧之分
  • 这里考虑的曲面是双侧曲面

有向曲面

  • 讨论对坐标的曲面积分时,需要指定曲面的
  • 通常可以通过曲面上法向量的指向来定出曲面的侧:
    • 例如,对于 z = z ( x , y ) z=z(x,y) z=z(x,y),若取它的法向量 n \bold{n} n的指向朝上,则认为取定曲面的上侧
    • 又如,对于闭曲面,如果它的法向量的指向朝外,则认为曲定曲面的外侧
  • 取定了法向量亦即选定了的曲面,称为有向曲面

曲面区域投影

  • Σ \Sigma Σ时有向曲面,在 Σ \Sigma Σ上取一小块曲面 Δ S \Delta{S} ΔS,把 Δ S \Delta{S} ΔS投影到 x O y xOy xOy面上得到一个投影区域,将这个投影区域的面积记为 ( Δ σ ) x y (\Delta{\sigma})_{xy} (Δσ)xy

  • 假定 Δ S \Delta{S} ΔS上各点处的法向量和** z z z夹角 γ \gamma γ的余弦 cos ⁡ γ \cos\gamma cosγ相同的符号**,规定 Δ S \Delta{S} ΔS x O y xOy xOy上的**投影 ( Δ S ) x y (\Delta{S})_{xy} (ΔS)xy**为

    • ( Δ S ) x y (\Delta{S})_{xy} (ΔS)xy= ( Δ σ ) x y (\Delta{\sigma})_{xy} (Δσ)xy, cos ⁡ γ > 0 \cos\gamma>0 cosγ>0
    • ( Δ S ) x y (\Delta{S})_{xy} (ΔS)xy= − ( Δ σ ) x y -(\Delta{\sigma})_{xy} (Δσ)xy, cos ⁡ γ < 0 \cos{\gamma}<0 cosγ<0
    • ( Δ S ) x y = 0 , (\Delta{S})_{xy}=0, (ΔS)xy=0, cos ⁡ γ = 0 \cos\gamma=0 cosγ=0(即 ( Δ σ ) x y = 0 (\Delta{\sigma})_{xy}=0 (Δσ)xy=0)
  • 由上述规定可知, Δ S \Delta{S} ΔS x O y xOy xOy面上的投影 ( Δ S ) x y (\Delta{S})_{xy} (ΔS)xy实际上就是 Δ S \Delta{S} ΔS x O y xOy xOy面上的投影区域的面积 ( Δ σ ) x y (\Delta{\sigma})_{xy} (Δσ)xy附以一定的正负号

  • 其他坐标面上的投影:类似地,可以定义 Δ S \Delta{S} ΔS y O z yOz yOz面和 z O x zOx zOx面上的投影 ( Δ S ) y z (\Delta{S})_{yz} (ΔS)yz Δ S z x \Delta{S}_{zx} ΔSzx

平面区域投影

  • 在讨论曲面面积的计算时,我们介绍了平面区域投影: σ \sigma σ= A cos ⁡ γ A\cos\gamma Acosγ
    • A A A是被投影的平面区域 D D D的面积
    • σ \sigma σ D D D投影到坐标面上的区域 D 0 D_{0} D0的面积
    • γ \gamma γ是两平面的夹角
  • 在元素法的应用下,曲面区域投影可以转化为平面区域投影

对坐标的曲面积分

流向曲面一侧的流量

简单情形
  • 设稳定流动(流速与时间 t t t无关)的不可压缩流体(假定密度为1)的速度场由

    • v ( x , y , z ) v(x,y,z) v(x,y,z)= P ( x , y , z ) i P(x,y,z)\bold{i} P(x,y,z)i+ Q ( x , y , z ) j Q(x,y,z)\bold{j} Q(x,y,z)j+ R ( x , y , z ) k R(x,y,z)\bold{k} R(x,y,z)k(1)
  • 给出, Σ \Sigma Σ是速度场中的一片有向曲面;函数 P , Q , R P,Q,R P,Q,R都在 Σ \Sigma Σ上连续,求在单位时间内流向 Σ \Sigma Σ指定侧的流体的质量,即流量 Φ \Phi Φ

  • 若流体流过平面上面积为 A A A的一个闭区域,且流体在闭区域上各点处的流速为 v \bold{v} v(常向量),又设 n \bold{n} n为该平面的单位法向量,那么在单位时间内流过该闭区域的流体组成一个底面积 A A A,斜高 v \bold{v} v斜柱体 V V V

  • θ = < v , n > \theta=<\bold{v,n}> θ=<v,n>(2),令 P P P= A v ⋅ n A\bold{v\cdot{n}} Avn(3)

    • θ < π 2 \theta<\frac{\pi}{2} θ<2π.此时 V V V的体积: A ∣ v ∣ cos ⁡ θ A|\bold{v}|\cos\theta Avcosθ= A v ⋅ n A\bold{v\cdot{n}} Avn= P P P
    • θ = π 2 \theta=\frac{\pi}{2} θ=2π,显然流体通过闭区域 A A A流向 n \bold{n} n所指的一侧的流量 Φ \Phi Φ为0, P = 0 P=0 P=0
      • 所以 Φ \Phi Φ= P P P=0
    • θ > π 2 \theta>\frac{\pi}{2} θ>2π, P < 0 P<0 P<0,这时我们仍然把 P P P称为流体通过闭区域 A A A流向 n n n所指的一侧的流量
      • 这表示流体通过闭区域 A A A流向 − n -\bold{n} n所指的一侧,且流向 − n -\bold{n} n所指一侧的流量为 − P -P P= − A v ⋅ n -A\bold{v}\cdot{\bold{n}} Avn(和流向 n \bold{n} n所指的一侧的流量为 P P P= A v ⋅ n A\bold{v\cdot{n}} Avn是同样的意思)
      • 换句话说:令 m = − n \bold{m}=-\bold{n} m=n,则流量 − A v ⋅ n -A\bold{v}\cdot{\bold{n}} Avn表示为 A v ⋅ m A\bold{v}\cdot{\bold{m}} Avm,因此,流向 m \bold{m} m的一侧的流量为 A v ⋅ m A\bold{v}\cdot{\bold{m}} Avm
  • 因此不论 θ \theta θ取何值,流体通过闭区域 A A A流向 n \bold n n所指的一侧的流量 Φ \Phi Φ均为 P P P

一般情形

  • 现在考虑非平面闭区域的情形,而是一片曲面区域,且流速 v \bold{v} v不是常向量的情形

  • 此时无法直接利用上一情形计算,但是可以利用元素法积分的方式应用

  • 把曲面 Σ \Sigma Σ分成 n n n小块 Δ S i \Delta{S}_i ΔSi,( Δ S i \Delta{S}_{i} ΔSi同时也表示第 i i i个小区块的面积)

  • Σ \Sigma Σ是光滑的和 v \bold{v} v是连续的前提下,只要 Δ S i \Delta{S_{i}} ΔSi直径很小,我们就可以用 Δ S i \Delta{S_{i}} ΔSi上任意一点 ( ξ i η i , ζ i ) (\xi_{i}\eta_{i},\zeta_{i}) (ξiηi,ζi)处的流速 v i \bold{v}_{i} vi= v i ( ξ i , η i , ζ i ) \bold{v}_{i}(\xi_{i},\eta_{i},\zeta_{i}) vi(ξi,ηi,ζi)= P ( ξ i , η i , ζ i ) i + Q ( ξ i , η i , ζ i ) j + R ( ξ i , η i , ζ i ) k P(\xi_{i},\eta_{i},\zeta_{i})\bold{i}+Q(\xi_{i},\eta_{i},\zeta_{i})\bold{j}+R(\xi_{i},\eta_{i},\zeta_{i})\bold{k} P(ξi,ηi,ζi)i+Q(ξi,ηi,ζi)j+R(ξi,ηi,ζi)k(4)代替 Δ S i \Delta{S_{i}} ΔSi上其他个点处的流速,以该点 ( ξ i , η i , ζ i ) (\xi_{i},\eta_{i},\zeta_{i}) (ξi,ηi,ζi)处曲面 Σ \Sigma Σ的法向量 n i \bold{n}_{i} ni= cos ⁡ α i i \cos\alpha_{i}\bold{i} cosαii+ cos ⁡ β i j \cos\beta_{i}\bold{j} cosβij+ cos ⁡ γ i k \cos\gamma_{i}\bold{k} cosγik(5)代替 Δ S i \Delta{S_{i}} ΔSi上其他各点处的单位法向量

  • 从而得到通过 Δ S i \Delta{S_{i}} ΔSi流向指定侧的流量近似为 v i ⋅ n i Δ S i \bold{v}_{i}\cdot{\bold{n}_{i}}\Delta{S}_{i} viniΔSi, ( i = 1 , 2 , ⋯ , n ) (i=1,2,\cdots,n) (i=1,2,,n)

  • 于是,通过 Σ \Sigma Σ流向指定侧的流量 Φ ≈ ∑ i = 1 n v i ⋅ n i Δ S i \Phi\approx{\sum_{i=1}^{n}\bold{v}_{i}\cdot{\bold{n}_{i}}}\Delta{S_{i}} Φi=1nviniΔSi(6)这是初步的近似

  • 考虑到以下近似组(7)

    • cos ⁡ α i ⋅ Δ S i ≈ ( Δ S i ) y z \cos\alpha_{i}\cdot{\Delta{S_{i}}} \approx{(\Delta{S_{i}})_{yz}} cosαiΔSi(ΔSi)yz;
    • cos ⁡ β i ⋅ Δ S i ≈ ( Δ S i ) z x \cos\beta_{i}\cdot{\Delta{S_{i}}} \approx{(\Delta{S_{i}})_{zx}} cosβiΔSi(ΔSi)zx;
    • cos ⁡ γ i ⋅ Δ S i ≈ ( Δ S i ) x y \cos\gamma_{i}\cdot{\Delta{S_{i}}} \approx{(\Delta{S_{i}})_{xy}} cosγiΔSi(ΔSi)xy
  • 将(4,5,7)代入式(6),得: Φ ≈ \Phi\approx Φ ∑ i = 1 n [ P ( ξ i , η i , ζ i ) ( Δ S i ) y z \sum_{i=1}^{n} [P(\xi_{i},\eta_{i},\zeta_{i}){(\Delta{S_{i}})_{yz}} i=1n[P(ξi,ηi,ζi)(ΔSi)yz+ Q ( ξ i , η i , ζ i ) ( Δ S i ) z x Q(\xi_{i},\eta_{i},\zeta_{i}){(\Delta{S_{i}})_{zx}} Q(ξi,ηi,ζi)(ΔSi)zx+ R ( ξ i , η i , ζ i ) ( Δ S i ) x y ] R(\xi_{i},\eta_{i},\zeta_{i}){(\Delta{S_{i}})_{xy}}] R(ξi,ηi,ζi)(ΔSi)xy](8)

  • 当各小块曲面的直径的最大值 λ → 0 \lambda\to{0} λ0取和式(8)的极限,得到流量 Φ \Phi Φ的精确值

小结
  • 上述问题的数学模型还会再其他问题中遇到,可从其中抽象出对坐标的曲面积分的概念

对坐标的曲面积分

  • Σ \Sigma Σ为光滑的有向曲面,函数 P ( x , y , z ) P(x,y,z) P(x,y,z) Σ \Sigma Σ有界,把 Σ \Sigma Σ任意分成 n n n块小区面 Δ S i \Delta{S}_{i} ΔSi( Δ S i \Delta{S}_{i} ΔSi同时也表示第 i i i个小区块的面积)
  • Δ S i \Delta{S_{i}} ΔSi x O y xOy xOy面上的投影为 ( Δ S i ) x y (\Delta{S}_{i})_{xy} (ΔSi)xy,
  • ( ξ i , η i , ζ i ) (\xi_{i},\eta_{i},\zeta_{i}) (ξi,ηi,ζi) Δ S i \Delta{S}_{i} ΔSi上任意取定的一点,作乘积 R ( ξ i , η i , ζ i ) ( Δ S i ) x y R(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{xy} R(ξi,ηi,ζi)(ΔSi)xy, ( i = 1 , 2 , ⋯ , n ) (i=1,2,\cdots,n) (i=1,2,,n)
  • 作和式 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \sum_{i=1}^{n}R(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{xy} i=1nR(ξi,ηi,ζi)(ΔSi)xy(1)
  • 若当各小区曲面的直径的最大值 λ → 0 \lambda\to{0} λ0,和式(1)的极限总是存在,且与曲面 Σ \Sigma Σ的分发以及点 ( ξ i , η i , ζ i ) (\xi_{i},\eta_{i},\zeta_{i}) (ξi,ηi,ζi)的取法无关,那么称此极限为函数 R ( x , y , z ) R(x,y,z) R(x,y,z)在有向曲面 Σ \Sigma Σ上对坐标 x , y x,y x,y的曲面积分,记为 ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy
  • ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy= lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \lim\limits_{\lambda\to{0}} \sum_{i=1}^{n}R(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{xy} λ0limi=1nR(ξi,ηi,ζi)(ΔSi)xy(2-1)
  • 其中 R ( x , y , z ) R(x,y,z) R(x,y,z)称为被积函数, Σ \Sigma Σ称为积分曲面

其他定义

  • 类似地可以定义函数 P ( x , y , z ) P(x,y,z) P(x,y,z)在有向曲面 Σ \Sigma Σ上对坐标 y , z y,z y,z的曲面积分 ∬ Σ P ( x , y , z ) d y d z \iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z ΣP(x,y,z)dydz= lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) ( Δ S i ) y z \lim\limits_{\lambda\to{0}} \sum_{i=1}^{n}P(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{yz} λ0limi=1nP(ξi,ηi,ζi)(ΔSi)yz(2-2)
  • 以及函数 Q ( x , y , z ) Q(x,y,z) Q(x,y,z)在有向曲面 Σ \Sigma Σ上对坐标 z , x z,x z,x的曲面积分 ∬ Σ Q ( x , y , z ) d z d x \iint\limits_{\Sigma}Q(x,y,z)\mathrm{d}z\mathrm{d}x ΣQ(x,y,z)dzdx= lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) ( Δ S i ) z x \lim\limits_{\lambda\to{0}} \sum_{i=1}^{n}Q(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{zx} λ0limi=1nQ(ξi,ηi,ζi)(ΔSi)zx(2-3)
  • 上述(2-1,2-2,2-3)也称为第二类曲面积分

第二类曲面积分的存在性

  • P , Q , R P,Q,R P,Q,R函数在有向光滑曲面 Σ \Sigma Σ上连续时,对坐标的曲面积分存在
  • 讨论第二类曲面积分时,总假设 P , Q , R P,Q,R P,Q,R Σ \Sigma Σ上连续

并写和简写

  • 和第二类曲线积分类似的简写方案

  • ∬ Σ P ( x , y , z ) d y d z \iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z ΣP(x,y,z)dydz+ ∬ Σ Q ( x , y , z ) d z d x \iint\limits_{\Sigma}Q(x,y,z)\mathrm{d}z\mathrm{d}x ΣQ(x,y,z)dzdx+ ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy可以简写为 ∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y \iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z+Q(x,y,z)\mathrm{d}z\mathrm{d}x+R(x,y,z)\mathrm{d}x\mathrm{d}y ΣP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy(3)

  • 进一步简写为 ∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy(4)

流量用第二类曲面积分描述

  • 前述流量问题用第二类曲面积分描述: Φ \Phi Φ= ∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y \iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z+Q(x,y,z)\mathrm{d}z\mathrm{d}x+R(x,y,z)\mathrm{d}x\mathrm{d}y ΣP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy

性质

  • 对坐标的曲面积分具有和对坐标的曲线积分类似的性质
  • 可加性:
    • Σ \Sigma Σ是分片光滑的有向曲面,则规定函数在 Σ \Sigma Σ上对坐标的曲面积分等于函数在各片光滑曲面上对坐标的曲面积分之和
    • Σ \Sigma Σ= Σ 1 + Σ 2 \Sigma_{1}+\Sigma_{2} Σ1+Σ2,
      • ∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy= ∬ Σ 1 P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma_1}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y Σ1Pdydz+Qdzdx+Rdxdy+ ∬ Σ 2 P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma_2}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y Σ2Pdydz+Qdzdx+Rdxdy(5)
      • 可以推广到 Σ \Sigma Σ= Σ 1 + ⋯ + Σ n \Sigma_{1}+\cdots+\Sigma_{n} Σ1++Σn的情形
  • 方向性质
    • Σ \Sigma Σ是有向曲面, Σ − \Sigma^{-} Σ表示与 Σ \Sigma Σ取相反侧的有向曲面,则
      • ∬ Σ − P d y d z \iint\limits_{\Sigma^{-}}P\mathrm{d}y\mathrm{d}z ΣPdydz= − ∬ Σ P d y d z -\iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z ΣPdydz(6-1)
      • 类似的有
        • ∬ Σ − Q d z d x \iint\limits_{\Sigma^{-}}Q\mathrm{d}z\mathrm{d}x ΣQdzdx= − ∬ Σ Q d z d x -\iint\limits_{\Sigma}Q\mathrm{d}z\mathrm{d}x ΣQdzdx(6-2)
        • ∬ Σ − R d x d y \iint\limits_{\Sigma^{-}}R\mathrm{d}x\mathrm{d}y ΣRdxdy= − ∬ Σ R d x d y -\iint\limits_{\Sigma}R\mathrm{d}x\mathrm{d}y ΣRdxdy(6-3)
    • 即当积分曲面改变为相反侧时,对坐的曲面积分要改变符号

对坐标的曲面积分的计算

  • 设积分曲面 Σ \Sigma Σ是由方程 z = z ( x , y ) z=z(x,y) z=z(x,y)(0)所给出的曲面上侧
    • Σ \Sigma Σ x O y xOy xOy面上的投影区域为 D x y D_{xy} Dxy函数 z = z ( x , y ) z=z(x,y) z=z(x,y) D x y D_{xy} Dxy上具有一阶连续偏导数
    • 被积函数 R ( x , y , z ) R(x,y,z) R(x,y,z) Σ \Sigma Σ连续
  • 按对坐标的曲面积分定义,有 ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy= lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \lim\limits_{\lambda\to{0}} \sum_{i=1}^{n} R(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{xy} λ0limi=1nR(ξi,ηi,ζi)(ΔSi)xy(1)
  • 因为 Σ \Sigma Σ取上侧, cos ⁡ γ > 0 \cos\gamma>0 cosγ>0,所以 ( Δ S i ) x y (\Delta{S}_{i})_{xy} (ΔSi)xy= ( Δ σ i ) x y (\Delta{\sigma}_{i})_{xy} (Δσi)xy(2)
  • 又因为 ( ξ i , η i , ζ i ) (\xi_{i},\eta_{i},\zeta_{i}) (ξi,ηi,ζi) Σ \Sigma Σ上一点,所以 ζ i \zeta_{i} ζi= z ( ξ i , η i ) z(\xi_{i},\eta_i) z(ξi,ηi)(3),
  • 由(2,3)得: ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \sum_{i=1}^{n} R(\xi_{i},\eta_{i},\zeta_{i})(\Delta{S}_{i})_{xy} i=1nR(ξi,ηi,ζi)(ΔSi)xy= ∑ i = 1 n R ( ξ i , η i , z ( ξ i , η i ) ) ( Δ σ i ) x y \sum_{i=1}^{n} R (\xi_{i},\eta_{i},z(\xi_{i},\eta_i))(\Delta{\sigma}_{i})_{xy} i=1nR(ξi,ηi,z(ξi,ηi))(Δσi)xy(4)
  • 令各小块曲面的直径的最大值 λ → 0 \lambda\to{0} λ0,取上式两端的极限,并分别由曲面积分的定义和二重积分的定义,得
    • ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy= ∬ D x y R ( x , y , z ( x , y ) ) d x d y \iint\limits_{D_{xy}}R(x,y,z(x,y))\mathrm{d}x\mathrm{d}y DxyR(x,y,z(x,y))dxdy(5)
  • 这就是把对坐标的曲面积分化为二重积分的公式
  • 公式(5)的曲面积分是取在曲面 Σ \Sigma Σ上侧,
  • 若曲面积分取在 Σ \Sigma Σ下侧,此时 cos ⁡ γ < 0 \cos{\gamma}<0 cosγ<0,则 ( Δ S i ) x y (\Delta{S_{i}})_{xy} (ΔSi)xy= − ( Δ σ i ) x y -(\Delta{\sigma}_{i})_{xy} (Δσi)xy,从而 ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy= − ∬ D x y R ( x , y , z ( x , y ) ) d x d y -\iint\limits_{D_{xy}}R(x,y,z(x,y))\mathrm{d}x\mathrm{d}y DxyR(x,y,z(x,y))dxdy(5-1)

公式的其他形式

  • 若曲面 Σ \Sigma Σ x = x ( y , z ) x=x(y,z) x=x(y,z)给出,则

    • ∬ Σ P ( x , y , z ) d y d z \iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z ΣP(x,y,z)dydz= ± ∬ D x y P ( x ( y , z ) , y , z ) d y d z \pm\iint\limits_{D_{xy}}P(x(y,z),y,z)\mathrm{d}y\mathrm{d}z ±DxyP(x(y,z),y,z)dydz(6)

    • 符号的确定

      • 若积分曲面 Σ \Sigma Σ是由方程 x = x ( y , z ) x=x(y,z) x=x(y,z)给出的曲面前侧,则 cos ⁡ α > 0 \cos\alpha>0 cosα>0,取正号
      • 否则 Σ \Sigma Σ后侧,即 cos ⁡ α < 0 \cos\alpha<0 cosα<0,应取负号
  • 若曲面 Σ \Sigma Σ y = y ( z , x ) y=y(z,x) y=y(z,x)给出,则

    • ∬ Σ Q ( x , y , z ) d z d x \iint\limits_{\Sigma}Q(x,y,z)\mathrm{d}z\mathrm{d}x ΣQ(x,y,z)dzdx= ± ∬ D x y Q ( x , y ( z , x ) , z ) d z d x \pm\iint\limits_{D_{xy}}Q(x,y(z,x),z)\mathrm{d}z\mathrm{d}x ±DxyQ(x,y(z,x),z)dzdx(7)
    • 符号确定:
      • 积分曲面 Σ \Sigma Σ是由方程 y = y ( z , x ) y=y(z,x) y=y(z,x)所给出的曲面右侧,即 cos ⁡ β > 0 \cos\beta>0 cosβ>0,应取正号,反之 Σ \Sigma Σ左侧, cos ⁡ β < 0 \cos\beta<0 cosβ<0,应取负号
  • 综上(5,6,7),我们讨论了在3中不同曲面方程和投影下的第二类曲面积分的公式

应用

  • 例如,公式(5),公式表明,计算曲面积分 ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y ΣR(x,y,z)dxdy时,只需要将
    1. 确定符号:根据积分曲面的方向(侧),以及上数介绍的规则确定结果是否加符号
      • 若方向向上/前/右(这三个方向是沿着坐标轴 ( z , x , y 轴 ) (z,x,y轴) (z,x,y)正方向的方向)则为正号(不加符号),否则加负号
    2. 其中的变量 z z z换成 Σ \Sigma Σ的函数 z ( x , y ) z(x,y) z(x,y),也就是被积表达式的变换
      • 如果是公式(6或7)(曲面方程分别为 x = x ( y , z ) x=x(y,z) x=x(y,z) y = y ( z , x ) y=y(z,x) y=y(z,x),则分别将 x x x替换为 x ( y , z ) x(y,z) x(y,z), y y y替换为 y ( z , x ) y(z,x) y(z,x))
    3. 然后在 Σ \Sigma Σ投影区域 D x y D_{xy} Dxy上计算二重积分即可
      • 这里建议积分区域最后处理,如果被积函数替换后发现可以提到积分号外,则只需要计算 D x y D_{xy} Dxy的面积,而不需要化为二次积分
  • 分段积分不急于逐项独立计算
    • 有时积分曲面被划分为多个片,这些片的计算式可能有联系,合起来算可能比分开算更加简便

  • 计算 I = ∬ Σ x 2 d y d z + y 2 d z d x + z 2 d x d y I=\iint\limits_{\Sigma} x^2\mathrm{d}y\mathrm{d}z+y^2\mathrm{d}z\mathrm{d}x+z^2\mathrm{d}x\mathrm{d}y I=Σx2dydz+y2dzdx+z2dxdy;
    • 其中 Σ \Sigma Σ是长方体 Ω \Omega Ω的真个表面的外侧
    • Ω \Omega Ω= { ( x , y , z ) ∣ x ∈ [ 0 , a ] , y ∈ [ 0 , b ] , z ∈ [ 0 , c ] } \set{(x,y,z)|x\in[0,a],y\in[0,b],z\in[0,c]} {(x,y,z)x[0,a],y[0,b],z[0,c]}
    • 分析积分曲面,可以将有向曲面分为6个部分: Σ 1 , ⋯ Σ 6 \Sigma_1,\cdots\Sigma_{6} Σ1,Σ6
      1. Σ 1 : z = c \Sigma_{1}:z=c Σ1:z=c, ( x ∈ [ 0 , a ] , y ∈ [ 0 , b ] ) (x\in[0,a],y\in[0,b]) (x[0,a],y[0,b])上侧
      2. Σ 2 : z = 0 \Sigma_{2}:z=0 Σ2:z=0, ( x ∈ [ 0 , a ] , y ∈ [ 0 , b ] ) (x\in[0,a],y\in[0,b]) (x[0,a],y[0,b])下侧
      3. Σ 3 : x = a \Sigma_{3}:x=a Σ3:x=a, ( y ∈ [ 0 , b ] , z ∈ [ 0 , c ] ) (y\in[0,b],z\in[0,c]) (y[0,b],z[0,c])前侧
      4. Σ 4 : x = 0 \Sigma_{4}:x=0 Σ4:x=0, ( y ∈ [ 0 , b ] , z ∈ [ 0 , b ] ) (y\in[0,b],z\in[0,b]) (y[0,b],z[0,b])后侧
      5. Σ 5 : y = b \Sigma_{5}:y=b Σ5:y=b, ( x ∈ [ 0 , a ] , z ∈ [ 0 , c ] ) (x\in[0,a],z\in[0,c]) (x[0,a],z[0,c])右侧
      6. Σ 6 : y = 0 \Sigma_{6}:y=0 Σ6:y=0, ( x ∈ [ 0 , a ] , z ∈ [ 0 , c ] ) (x\in[0,a],z\in[0,c]) (x[0,a],z[0,c])左侧
    • 对于积分 I I I,采用分项积分的方式
      • 第一项 I 1 I_1 I1:要投影到 x = 0 x=0 x=0面上,可知仅有 Σ 3 , Σ 4 \Sigma_3,\Sigma_4 Σ3,Σ4的投影非0
        • I 1 I_1 I1= ∬ Σ x 2 d y d z \iint\limits_{\Sigma}x^2\mathrm{d}y\mathrm{d}z Σx2dydz= ∬ Σ 3 x 2 d y d z \iint\limits_{\Sigma_3}x^2\mathrm{d}y\mathrm{d}z Σ3x2dydz+ ∬ Σ 4 x 2 d y d z \iint\limits_{\Sigma_4}x^2\mathrm{d}y\mathrm{d}z Σ4x2dydz
          • 利用公式(6-1)得 I 1 I_{1} I1= ∬ D y z a 2 d y d z \iint\limits_{D_{yz}}a^2\mathrm{d}y\mathrm{d}z Dyza2dydz- ∬ D y z 0 2 d y d z \iint\limits_{D_{yz}}0^2\mathrm{d}y\mathrm{d}z Dyz02dydz= a 2 b c a^2bc a2bc
        • 类似地, I 2 I_2 I2= ∬ Σ y 2 d z d x \iint\limits_{\Sigma}y^2\mathrm{d}z\mathrm{d}x Σy2dzdx= b 2 a c b^2ac b2ac; I 3 I_3 I3= ∬ Σ z 2 d x d y \iint\limits_{\Sigma}z^2\mathrm{d}x\mathrm{d}y Σz2dxdy= c 2 a b c^2ab c2ab
      • 所以 I = I 1 + I 2 + I 3 I=I_1+I_2+I_3 I=I1+I2+I3= ( a + b + c ) a b c (a+b+c)abc (a+b+c)abc

  • 计算曲面积分 I = ∬ Σ x y z d x d y I=\iint\limits_{\Sigma}xyz\mathrm{d}x\mathrm{d}y I=Σxyzdxdy,其中 Σ \Sigma Σ是球面 x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 x2+y2+z2=1外侧 x , y ⩾ 0 x,y\geqslant{0} x,y0的部分
    • 显然, Σ \Sigma Σ是第一和第五卦象的部分是 1 4 \frac{1}{4} 41的球面
    • 考虑曲面的方向(侧),检查该曲面可知, Σ \Sigma Σ z = 0 z=0 z=0以上的外侧对应于上侧;而 z = 0 z=0 z=0以下的外侧对应于下侧
      • 而下侧部分记为 Σ 1 \Sigma_1 Σ1方程为 z 1 {z_1} z1= − 1 − x 2 − y 2 -\sqrt{1-x^2-y^2} 1x2y2 ,此时 z 1 ⩽ 0 z_1\leqslant{0} z10
      • 将上侧部分记为 Σ 2 \Sigma_2 Σ2,方程为 z 2 {z_2} z2= 1 − x 2 − y 2 \sqrt{1-x^2-y^2} 1x2y2 ,此时 z 2 ⩾ 0 z_2\geqslant{0} z20
    • 从而可以分区域积分:
      • I I I= ∬ Σ 2 x y z d x d y \iint\limits_{\Sigma_2}xyz\mathrm{d}x\mathrm{d}y Σ2xyzdxdy+ ∬ Σ 1 x y z d x d y \iint\limits_{\Sigma_1}xyz\mathrm{d}x\mathrm{d}y Σ1xyzdxdy
        • = ∬ D x y x y 1 − x 2 − y 2 d x d y \iint\limits_{D_{xy}} xy\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y Dxyxy1x2y2 dxdy- ∬ D x y x y ( − 1 − x 2 − y 2 ) d x d y \iint\limits_{D_{xy}}xy(-\sqrt{1-x^2-y^2})\mathrm{d}x\mathrm{d}y Dxyxy(1x2y2 )dxdy
        • = 2 ∬ D x y x y 1 − x 2 − y 2 d x d y 2\iint\limits_{D_{xy}} xy\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y 2Dxyxy1x2y2 dxdy
      • 容易求出 D x y D_{xy} Dxy= { ( x , y ) ∣ x 2 + y 2 ⩽ 1 } \set{(x,y)|x^2+y^2\leqslant{1}} {(x,y)x2+y21},则上述积分适合用极坐标计算
        • θ ∈ [ 0 , π 2 ] \theta\in[0,\frac{\pi}{2}] θ[0,2π]; r ∈ [ 0 , 1 ] r\in[0,1] r[0,1]
        • 从而 I I I= 2 ∬ D x y r 2 sin ⁡ θ cos ⁡ θ 1 − r 2 r d r d θ 2\iint\limits_{D_{xy}} r^2\sin\theta\cos\theta\sqrt{1-r^2}r\mathrm{d}r\mathrm{d}\theta 2Dxyr2sinθcosθ1r2 rdrdθ
          • = ∫ 0 π 2 sin ⁡ 2 θ d θ ∫ 0 1 r 3 1 − r 2 d ρ \int_{0}^{\frac{\pi}{2}}\sin{2\theta}\mathrm{d}\theta \int_{0}^{1}r^3\sqrt{1-r^2}\mathrm{d}\rho 02πsin2θdθ01r31r2 dρ
            • 观察可知,两次积分可以独立计算, ∫ 0 π 2 sin ⁡ 2 θ d θ \int_{0}^{\frac{\pi}{2}}\sin{2\theta}\mathrm{d}\theta 02πsin2θdθ=1
            • 利用第2类换元法积分,可以求得 ∫ 0 1 r 3 1 − r 2 d ρ \int_{0}^{1}r^3\sqrt{1-r^2}\mathrm{d}\rho 01r31r2 dρ= 2 15 \frac{2}{15} 152
          • = 1 ⋅ 2 15 1\cdot{\frac{2}{15}} 1152= 2 15 \frac{2}{15} 152
    • 综上 I I I= 2 15 \frac{2}{15} 152

这篇关于对坐标的曲面积分@第二类曲面积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430355

相关文章

微积分-积分应用5.4(功)

术语“功”在日常语言中用来表示完成一项任务所需的总努力量。在物理学中,它有一个依赖于“力”概念的技术含义。直观上,你可以将力理解为对物体的推或拉——例如,一个书本在桌面上的水平推动,或者地球对球的向下拉力。一般来说,如果一个物体沿着一条直线运动,位置函数为 s ( t ) s(t) s(t),那么物体上的力 F F F(与运动方向相同)由牛顿第二运动定律给出,等于物体的质量 m m m 与其

SW - 引入第三方dwg图纸后,修改坐标原点

文章目录 SW - 引入第三方dwg图纸后,修改坐标原点概述笔记设置图纸新原点END SW - 引入第三方dwg图纸后,修改坐标原点 概述 在solidworks中引入第三方的dwg格式图纸后,坐标原点大概率都不合适。 全图自动缩放后,引入的图纸离默认的原点位置差很多。 需要自己重新设置原点位置,才能自动缩放后,在工作区中间显示引入的图纸。 笔记 将dwg图纸拖到SW中

三维激光扫描点云配准外业棋盘的布设与棋盘坐标测量

文章目录 一、棋盘标定板准备二、棋盘标定板布设三、棋盘标定板坐标测量 一、棋盘标定板准备 三维激光扫描棋盘是用来校准和校正激光扫描仪的重要工具,主要用于提高扫描精度。棋盘标定板通常具有以下特点: 高对比度图案:通常是黑白相间的棋盘格,便于识别。已知尺寸:每个格子的尺寸是已知的,可以用于计算比例和调整。平面标定:帮助校准相机和激光扫描仪之间的位置关系。 使用方法 扫描棋盘:

C/C++两点坐标求距离以及C++保留两位小数输出,秒了

目录 1. 前言 2. 正文 2.1 问题 2.2 解决办法 2.2.1 思路 2.2.2 代码实现 3. 备注 1. 前言 依旧是带来一个练手的题目,目的就一个,方法千千万,通向终点的方式有很多种,没有谁与谁,我们都是为了成为更好的自己。 2. 正文 2.1 问题 题目描述: 输入两点坐标(X1,Y1),(X2,Y2),计算并输出两点间的距离。 输入格式:

变速积分PID控制算法

变速积分PID控制算法 变速积分PID控制算法:变速积分PID的基本思想:变速积分的PID积分项表达式: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 变速积分PID控制算法: 在普通的PID控制算法中,由于积分系数 k i k_i ki​是常数,所以在整个控制过程中,积分增量不变。而系统对积分项的要求是,系统偏差大

梯形积分PID控制算法

梯形积分PID控制算法 梯形积分PID控制算法: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 梯形积分PID控制算法: 在PID控制律中积分项的作用是消除余差,为了减小余差,应提高积分项的运算精度,为此,可将矩形积分改为梯形积分。梯形积分的计算公式: ∫ 0 t e ( t ) d t = ∑ i = 0 k e

抗积分饱和PID控制算法

抗积分饱和PID控制算法 抗积分饱和PID控制算法:1.积分饱和现象:2.抗积分饱和算法: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 抗积分饱和PID控制算法: 1.积分饱和现象: 所谓积分饱和现象是指若系统存在一个方向偏差,PID控制器的输出由于积分作用的不断累加而加大,从而导致执行机构到达极限位置 X m

积分分离PID控制算法

积分分离PID控制算法 积分分离PID控制:积分分离控制基本思路:积分分离控制算法表示:积分分离式PID控制算法程序流程图: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 积分分离PID控制: 在普通的PID控制中引入积分环节的目的,主要为了消除静差,提高控制精度。但在过程启动、结束或大幅度增减设定时,短时间内系统输出

1.39TB高清卫星影像更新(WGS84坐标投影)

最近对WGS84版的高清卫星影像数据进行了一次更新,并基于更新区域生成了相应的接图表。 1.39TB高清卫星影像更新 本次数据更新了1576个离线包,共1.39TB大小,并全部生成了更新接图表。 更新接图表范围 更新接图表由每一个离线包文件的范围构成,放大地图可以查看接图表的编号。    接图表编号 我们打开瓦片编号并放到到第12级,可以发现接图表的编号与瓦片编号完全一

halcon 的图像坐标转到实际的机械坐标的标定

所谓手眼系统,就是人眼睛看到一个东西的时候要让手去抓取,就需要大脑知道眼睛和手的坐标关系。如果把大脑比作B,把眼睛比作A,把手比作C,如果A和B的关系知道,B和C的关系知道,那么C和A的关系就知道了,也就是手和眼的坐标关系也就知道了。 相机知道的是像素坐标,机械手是空间坐标系,所以手眼标定就是得到像素坐标系和空间机械手坐标系的坐标转化关系。 在实际控制中,相机检测到目标在图像中的像