使用VC++设计程序:实现常见的三种图像插值算法:最近邻插值,双线性插值,立方卷积插值

本文主要是介绍使用VC++设计程序:实现常见的三种图像插值算法:最近邻插值,双线性插值,立方卷积插值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像放大的三种插值算法

获取源工程可访问gitee可在此工程的基础上进行学习。
该工程的其他文章:
01- 一元熵值、二维熵值
02- 图像平移变换,图像缩放、图像裁剪、图像对角线镜像以及图像的旋转
03-邻域平均平滑算法、中值滤波算法、K近邻均值滤波器
04-分段线性变换,直方图均衡化、锐化处理
05-基于拉普拉斯算子、Canny的边缘检测功能、实现Otsu分割方法

文章目录

  • 图像放大的三种插值算法
    • 实验内容
    • 一、 插值算法的原理
      • 1. 最近邻插值
      • 2. 双线性插值
      • 3. 立方卷积插值
    • 二、 实验代码与现象图
      • 1. 最近邻插值
      • 2. 双线性插值
      • 3.立方卷积插值

实验内容

B–(3)研究放大图像时使用的插值算法,使用VC++实现常见的三种图像插值算法:最近邻插值,双线性插值,立方卷积插值。通过实验验证其效果。

一、 插值算法的原理

1. 最近邻插值

最近邻插值是一种简单的插值方法,它选择离目标位置最近的已知像素值。对于二维图像上的插值,最近邻插值的公式为:

I new ( x , y ) = I old ( round ( x ) , round ( y ) ) I_{\text{new}}(x, y) = I_{\text{old}}\left(\text{round}(x), \text{round}(y)\right) Inew(x,y)=Iold(round(x),round(y))

其中:

  • $ I_{\text{new}}(x, y) $ 是目标位置的新像素值。
  • $ I_{\text{old}}(x’, y’) $是原始图像中最近邻的已知像素值,其中 $ (x’, y’) $ 由 $ (x, y) $ 四舍五入得到。

2. 双线性插值

双线性插值考虑了目标位置周围的四个最近的已知像素值,并根据其相对位置进行加权平均。对于二维图像上的插值,双线性插值的公式为:

I new ( x , y ) = ( 1 − α ) ( 1 − β ) I old ( x 1 , y 1 ) + α ( 1 − β ) I old ( x 2 , y 1 ) + ( 1 − α ) β I old ( x 1 , y 2 ) + α β I old ( x 2 , y 2 ) I_{\text{new}}(x, y) = (1 - \alpha)(1 - \beta)I_{\text{old}}(x_1, y_1) + \alpha(1 - \beta)I_{\text{old}}(x_2, y_1) + (1 - \alpha)\beta I_{\text{old}}(x_1, y_2) + \alpha \beta I_{\text{old}}(x_2, y_2) Inew(x,y)=(1α)(1β)Iold(x1,y1)+α(1β)Iold(x2,y1)+(1α)βIold(x1,y2)+αβIold(x2,y2)
其中:

  • $ I_{\text{new}}(x, y) $ 是目标位置的新像素值。
  • $ I_{\text{old}}(x_i, y_i)$是原始图像中四个最近邻的已知像素值,其中 $ (x_i, y_i) $ 是目标位置的四个相邻像素的坐标。
  • $ \alpha = x - x_1 $ 和 $ \beta = y - y_1$。

双线性插值算法涉及到目标位置周围的四个最近邻的已知像素值。这四个最近邻的像素可以通过目标位置坐标的整数部分和小数部分来确定。假设目标位置的坐标为 ((x, y)),则这四个最近邻的坐标可以表示为 ((x_1, y_1), (x_2, y_1), (x_1, y_2), (x_2, y_2)),其中:

  • x 1 = ⌊ x ⌋ x_1 = \lfloor x \rfloor x1=x x x x的整数部分;
  • x 2 = ⌈ x ⌉ x_2 = \lceil x \rceil x2=x x x x的整数部分加一;
  • y 1 = ⌊ y ⌋ y_1 = \lfloor y \rfloor y1=y y y y 的整数部分;
  • y 2 = ⌈ y ⌉ y_2 = \lceil y \rceil y2=y y y y 的整数部分加一。

这四个最近邻的坐标形成了一个矩形区域,如下图所示:

(x1, y1) ---------- (x2, y1)|                        ||                        ||                        |
(x1, y2) ---------- (x2, y2)

3. 立方卷积插值

立方卷积插值考虑了目标位置周围的八个最近的已知像素值,并使用立方卷积核进行加权平均。对于二维图像上的插值,立方卷积插值的公式较为复杂,其中涉及到立方卷积核的权重计算。

I new ( x , y ) = ∑ i = − 1 2 ∑ j = − 1 2 w ( i , j ) I old ( x + i , y + j ) I_{\text{new}}(x, y) = \sum_{i = -1}^{2} \sum_{j = -1}^{2} w(i, j)I_{\text{old}}(x + i, y + j) Inew(x,y)=i=12j=12w(i,j)Iold(x+i,y+j)

其中:

  • $ I_{\text{new}}(x, y) $ 是目标位置的新像素值。
  • $I_{\text{old}}(x + i, y + j) $ 是原始图像中八个最近邻的已知像素值,其中 $i $ 和 $j $取值为 -1, 0, 1, 2。
  • $ w(i, j) $ 是立方卷积核的权重,通常采用一些特定的卷积核形式,如 Bicubic 插值。

在立方卷积插值中,涉及到的是8个点。以下是正确的描述:

对于立方卷积插值,考虑目标位置 ( x , y ) (x, y) (x,y) 周围的8个最近邻点,其坐标可以表示为 ( x i , y j ) (x_i, y_j) (xi,yj),其中:

x i = x − 1 , 0 , 1 , 2 x_i = x - 1, 0, 1, 2 xi=x1,0,1,2
y j = y − 1 , 0 , 1 , 2 y_j = y - 1, 0, 1, 2 yj=y1,0,1,2

这样,可以得到一个包含8个点的矩阵,如下所示:

(x-1, y-1)  |  (x, y-1)  |  (x+1, y-1)  |  (x+2, y-1)
(x-1, y)    |  (x, y)    |  (x+1, y)    |  (x+2, y)
(x-1, y+1)  |  (x, y+1)  |  (x+1, y+1)  |  (x+2, y+1)
(x-1, y+2)  |  (x, y+2)  |  (x+1, y+2)  |  (x+2, y+2)

这里的坐标形成了一个4x4的矩阵,但在立方卷积插值中,只需要考虑中间的8个点。这8个点的坐标将用于计算插值权重。

二、 实验代码与现象图

1. 最近邻插值

void CImageProcessingView::OnGeoResizing()
{// 实验 图像缩放//MessageBox("请在这里添加图像缩放的代码");// 获得当前文档对象
CImageProcessingDoc* pDoc = GetDocument();// 判断图像是否已被加载if( pDoc->m_pDibInit->IsEmpty() ){MessageBox("图像未加载");return;}int width = pDoc->m_pDibInit->GetWidth();int height = pDoc->m_pDibInit->GetHeight();int bitCount = pDoc->m_pDibInit->GetBitCount();// 将 m_pDibInit 拷贝至 m_pDibTestpDoc->m_pDibTest->CloneDib(pDoc->m_pDibInit);// 考虑将图像放大两倍的情况 float nResizing = 2;// 获得新的图像高度int newWidth = width*nResizing;int newHeight = height*nResizing;pDoc->m_pDibTest->SetWidthHeight(newWidth, newHeight);//*****************************图像的插值1最近邻插值算法************//int i=0;int j=0;float src_x, src_y;RGBQUAD Quad1;for(i=0;i<newWidth;i++)for(j=0;j<newHeight;j++){src_x = (i / nResizing) + 0.5; //四舍五入src_y = (j / nResizing) + 0.5;Quad1=pDoc->m_pDibInit->GetPixelColor(src_x,src_y);pDoc->m_pDibTest->SetPixelColor(i,j,&Quad1);}// 交换 m_pDibInit 与 m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp; // 设置脏标记pDoc->SetModifiedFlag(TRUE);// 更新视图pDoc->UpdateAllViews(NULL);
}

实验现象.
图像放大2倍
在这里插入图片描述

2. 双线性插值

 int i=0;int j=0;for(i=0;i<newWidth;i++)for(j=0;j<newHeight;j++){int x=i/nResizing, y = j / nResizing;  //定位,找周围四个点float u = i / nResizing,v = j / nResizing; //注意这个类型u =u - x;          //所占权重系数v =v - y;int gray0 , gray1 , gray2 , gray3 , GRAY ;gray0 = pDoc->m_pDibInit->GetPixelGray(x, y);//边界处理 非补零if (x + 1 < 256)gray1 = pDoc->m_pDibInit->GetPixelGray(x+1, y);elsegray1 = pDoc->m_pDibInit->GetPixelGray(x, y);if (y + 1 < 256)gray2 = pDoc->m_pDibInit->GetPixelGray(x, y + 1);elsegray2 = pDoc->m_pDibInit->GetPixelGray(x, y);if (x + 1 < 256 && y + 1 < 256)gray3 = pDoc->m_pDibInit->GetPixelGray(x + 1, y + 1);elsegray3 = pDoc->m_pDibInit->GetPixelGray(x, y);GRAY = (1 - u) * (1 - v) * gray0 + (1 - u) * v * gray2 + u * (1 - v) * gray1 + u * v * gray3;pDoc->m_pDibTest->SetPixelGray(i, j, GRAY);}// 交换 m_pDibInit 与 m_pDibTest 指针CDib* pTmp = pDoc->m_pDibInit;pDoc->m_pDibInit = pDoc->m_pDibTest;pDoc->m_pDibTest = pTmp;

实验效果图.

在这里插入图片描述

3.立方卷积插值

int a = -0.5;   //系数for(int i=0;i<newWidth;i++)for (int j = 0; j < newHeight; j++){int x[4] = { 0 }, y[4] = { 0 };x[1] = i / nResizing, y[1] = j / nResizing;  //找点,(1,1)位置x[0] = x[1] - 1; y[0] = y[1] - 1;x[2] = x[1] + 1; y[2] = y[1] + 1;x[3] = x[1] + 2; y[3] = y[1] + 2;float u = (i) / nResizing, v = (j) / nResizing;u =u - x[1];   //所占权重系数(大于0小于1)v =v - y[1];int gray[4][4] = { 0 };float w_x[4] = { 0 }, w_y[4] = { 0 };w_x[0] = 1 + u; w_x[1] = u; w_x[2] = 1 - u; w_x[3] = 2 - u;w_y[0] = 1 + v; w_y[1] = v; w_y[2] = 1 - v; w_y[3] = 2 - v;float W_x[4] = { 0 }, W_y[4] = { 0 };for (int k = 0; k < 4; k++)    //计算x和y的权重{if (w_x[k] <= 1 && w_x[k] >= -1)W_x[k] = (a + 2) * pow(w_x[k], 3) - (a + 3) * pow(w_x[k], 2) + 1;else if (w_x[k] > 1 && w_x[k] < 2) W_x[k] = a * pow(w_x[k], 3) - 5 * a * pow(w_x[k], 2) + 8 * a * w_x[k] - 4 * a;elseW_x[k] = 0;if (w_y[k] <= 1 && w_y[k] >= -1)W_y[k] = (a + 2) * pow(w_y[k], 3) - (a + 3) * pow(w_y[k], 2) + 1;else if (w_y[k] > 1 && w_y[k] < 2)W_y[k] = a * pow(w_y[k], 3) - 5 * a * pow(w_y[k], 2) + 8 * a * w_y[k] - 4 * a;elseW_y[k] = 0;}for(int k=0;k<4;k++)for (int m = 0; m < 4; m++){if (x[k] > 0 && x[k]<height && y[m] > 0 && y[m] < width) //判断边界gray[k][m] = pDoc->m_pDibInit->GetPixelGray(x[k], y[m]);elsegray[k][m] = 0;}int Pix_gray = 0;  //最终计算得到的灰度值for(int k=0;k<4;k++)for (int m = 0; m < 4; m++){Pix_gray += gray[k][m] * W_x[k] * W_y[m];}pDoc->m_pDibTest->SetPixelGray(i, j, Pix_gray);}

实验效果图.
在这里插入图片描述

这篇关于使用VC++设计程序:实现常见的三种图像插值算法:最近邻插值,双线性插值,立方卷积插值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/425771

相关文章

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤