【3D 图像分类】基于 Pytorch 的 3D 立体图像分类4(多人标注的结节立体框合并和特征等级投票)

本文主要是介绍【3D 图像分类】基于 Pytorch 的 3D 立体图像分类4(多人标注的结节立体框合并和特征等级投票),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LIDC-IDRI的数据集中,对于同一个案例,存在多个医生标注的结果。这就导致下面几种情况的出现:

  1. A医生标注的结节区域,B医生并不一定会标;
  2. B医生标注的结节,C医生也标注了,但是范围大小存在着交集关系;
  3. 同时标记,给的特征等级也不一定相同。

此时,就需要对一个案例标注的结节进行处理。可以根据标注次数进行选择,也可以简单粗暴的直接取并集。本文就直接取并集,比较的简单。如果要考虑标记次数,可以参考这篇文章:【3D 图像分割】基于 Pytorch 的 3D 图像分割6(数据预处理之LIDC-IDRI 标签 xml 标签转储及标记次数统计 )。

本文的目标,就是在上一节处理得到的PKL文件的基础上,获取一个个结节坐标信息,和对应需要处理的某个特征的信息,比如良恶性,比如钙化程度。最终得到一个合并后汇总版的坐标,和对应的等级,具体步骤如下:

  1. 获取一个个结节信息,包括坐标和等级;
  2. 对这些结节,根据IOU,分成一个个小堆,等着合并用;
  3. 一个堆,一个堆的合并在一起,等级是根据投票少数服从多数;
  4. 最后把合并后的坐标和等级存储下来,供后续裁剪使用。

一、具体实施 ❤️

实施上述内容的主调用函数如下,定义了pkl文件的路径、存储的路径、取什么特征。这样,在main里面就实施上述步骤,也会在本节中,分小节一一展开介绍。

def main(pkl_dir, mainKey, save_dir):pkl_list = os.listdir(pkl_dir)for pkl in pkl_list:name = pkl.split('_')[0]pkl_path = os.path.join(pkl_dir, pkl)print('pkl_path:', pkl_path)boxes, characteres = getPkl_info(pkl_path, mainKey=mainKey)   # 读取pkl文件,获取标注的信息print('boxes:', boxes, characteres)if boxes:cluster_l = make_one_cluster(boxes, iout=0.1)boxes_combine, level_combine = combine_bbox_level(cluster_l, boxes, characteres)print(boxes_combine)print(level_combine)print()np.save(os.path.join(save_dir, '%s_boxes.npy' % (name)), boxes_combine)np.save(os.path.join(save_dir, '%s_level.npy' % (name)), level_combine)if __name__=='__main__':pkl_dir = r'./pkl_file'save_dir = r'./nodule_cls_info'mainKey = 'nodule_calcification'#       实性            部分实性          磨玻璃影cls = ['solidNodule', 'solidNodulePart', 'GGO']main(pkl_dir, mainKey, save_dir)

1.1、读取PKL文件,获取信息

PKL文件的读取,在之前的文章中都有简单的介绍,感兴趣的可以去看看本专栏之前的文章,会对pkl文件的读取和存储留下更深的印象。

pkl文件中:

  • 一个结节一层的记录信息如下所示,
  • 一个结节不同层的信息,会组成一个列表
  • 不同结节,会组成一个更大的列表

对于下面一个结节一层的记录信息,就不一逐一展开介绍了,这块介绍参考上一篇文章:【3D 图像分类】基于 Pytorch 的 3D 立体图像分类3(LIDC-IDRI 肺结节 XML 特征标签 PKL 转储)

{'pixels': [[355, 278],[354, 279],[354, 280],[354, 281],[354, 282],[354, 283],[354, 284],[354, 285],[355, 286],[356, 286],[357, 286],[358, 285],[359, 285],[360, 284],[361, 284],[362, 283],[363, 282],[363, 281],[362, 280],[361, 279],[360, 279],[359, 278],[358, 278],[357, 278],[356, 278],[355, 278]],'sop_uid': '1.3.6.1.4.1.14519.5.2.1.6279.6001.265463834573905158752543199468','sop_Instance_num': 57,'nodule_id': 'Nodule 001','nodule_malignancy': 3,'nodule_subtlety': 4,'nodule_internal_struct': 1,'nodule_calcification': 6,'nodule_sphericity': 4,'nodule_margin': 5,'nodule_lobulation': 1,'nodule_spiculation': 1,'nodule_texture': 5},

获取pkl文件信息的完整定义代码如下,这里使用了一个外接立体框,表示一个结节的坐标,包括了zmin, ymin, xmin, zmax, ymax, xmax,去除掉了就只标记一层的结节。(这里你也可以不去掉,那最后就会留下这个,因为算IOU时候,它与其他的框的值比较低)

def getPkl_info(pkl_path, mainKey='nodule_malignancy'):boxes, character_l = [], []with open(pkl_path, "rb") as f:pkl_data = pickle.load(f)print(pkl_data)for rad_annotationID in pkl_data['nodules']:z_l, y_l, x_l = [], [], []for one_nodule in rad_annotationID:sop_Instance_num = one_nodule['sop_Instance_num']pixel_array = np.array(one_nodule['pixels'])character = one_nodule[mainKey]y1, x1, y2, x2 = np.min(pixel_array[:, 1]), np.min(pixel_array[:, 0]), np.max(pixel_array[:, 1]), np.max(pixel_array[:, 0])z_l.append(sop_Instance_num)y_l.append(y1), y_l.append(y2)x_l.append(x1), x_l.append(x2)zmin, zmax = min(z_l), max(z_l)ymin, ymax = min(y_l), max(y_l)xmin, xmax = min(x_l), max(x_l)if zmax > zmin:     # 去除掉只标记了一层的boxes.append([zmin, ymin, xmin, zmax, ymax, xmax])character_l.append(character)return boxes, character_l

1.2、根据IOU,分成小堆

在判断同一次检查,不同的结节之间的关系,采用了立体框之间的IOU作为判断标准,其中:

  1. IOU 低于阈值的,两个立体框之间是相离更大的,归为不同的结节
  2. IOU 高于阈值的,两个立体框之间是相交更大的,他们两个需要划到一个堆里面,供后续合并操作
def iou_3d(cubes_a, cubes_b):# cubes_a:[zi.min(), yi.min(), xi.min(),#           zi.max(), yi.max(), xi.max()]cubes_a = np.expand_dims(cubes_a, axis=1)cubes_b = np.expand_dims(cubes_b, axis=0)# np.maximum逐元素比较两个array的大小,取出大的值overlap = np.maximum(0.0,np.minimum(cubes_a[..., 3:], cubes_b[..., 3:]) -   # 大大,求最小np.maximum(cubes_a[..., :3], cubes_b[..., :3])     # 小小,求最大)overlap = np.prod(overlap, axis=-1)     # np.prod:计算数组中所有元素的乘积area_a = np.prod(cubes_a[..., 3:] - cubes_a[..., :3], axis=-1)  # 最大坐标减去最小坐标area_b = np.prod(cubes_b[..., 3:] - cubes_b[..., :3], axis=-1)iou = overlap / (area_a + area_b - overlap+1e-5)return ioudef make_one_cluster(boxes, iout=0.1):iou = iou_3d(boxes, boxes)n, m = iou.shapeiou[np.tril_indices_from(iou)] = 0print(iou, iou.shape, type(iou))# iou_l = iou.tolist()cluster_l = []all_l = []for i in range(n):res = np.where(iou[i] > iout)[0]print(i, res, type(res))match_index = res.tolist()if i not in all_l:match_index.append(i)cluster_l.append(match_index)all_l.extend(match_index)print(cluster_l)print(all_l)return cluster_l

上面代码中,除了计算框与框之间的IOU外,还需要去除对角线及其下三角形(tril)的值,这里都置为0。除此之外,1匹配到3,那就不能再3匹配到1了,所以增加了一个去重的判断,已经纳入了,就不在归入列表了。

1.3、合并在一起

合并在一起就比较的简单了,这里取的是并集,所以对于一个堆的不同医生标注的结节,zyx的最大值,最小的取最小,最大的取最大就可以了。

当然,你也可以取交集。但是,对于最后分类阶段对结节像素区域裁剪一般不构成影响的。因为结节的区域是比较小的,crop后的patch一般会比这个结节大很多的,所以,这点影响不大。

下面是合并的代码。

def combine_bbox_level(cluster_l, boxes, characteres):boxes_combine, level_combine = [], []for oneCluster in cluster_l:level_list, bbox_list = [], []for i in oneCluster:level_list.append(characteres[i])bbox_list.append(boxes[i])print('level_list:', level_list)print('bbox_list:', bbox_list)bbox_array = np.array(bbox_list)zmin, zmax = min(bbox_array[:, 0]), max(bbox_array[:, 3])ymin, ymax = min(bbox_array[:, 1]), max(bbox_array[:, 4])xmin, xmax = min(bbox_array[:, 2]), max(bbox_array[:, 5])characteristicLeval = max(level_list, key=level_list.count)boxes_combine.append([zmin, ymin, xmin, zmax, ymax, xmax])level_combine.append(characteristicLeval)return boxes_combine, level_combine

1.4、存储下来

通过前面一系列的处理,将多人标注的结节进行了汇总,多相应的等级进行了投票处理,得到了立体框的坐标,以及对应特征的等级。此时,将这两个数据临时存储下来,供后续裁剪等操作,提供数据。

存储的方式如下:

			np.save(os.path.join(save_dir, '%s_boxes.npy' % (name)), boxes_combine)np.save(os.path.join(save_dir, '%s_level.npy' % (name)), level_combine)

这样一次检查,就得到了一个_boxes.npy的文件,和一个_level.npy为文件。

打开npy文件查看,_boxes.npy存放的内容如下:

[[ 54 276 351  58 288 364][ 49 360 285  51 370 297][ 40 258 324  43 268 335][ 21 330 316  22 340 328][ 23 232 292  26 243 302][ 15 290 155  16 295 162][ 50 199 109  51 208 116]] 

_level.npy存放的内容如下:

[6 6 6 6 6 6 6]

二、总结 ❤️

本文就没有延伸太多无关的内容,主要就是对本系列一二两个动手实操内容的一个数据处理的补充。通过本文之后,你就得到了一个结节具体的坐标位置,以及对应特征类别的等级。有了这两个信息,无论你是做检测,还是扣成patch进行分类,都非常的简单了。

最后这个扣patch的操作,会在下一节给出,期待。

这篇关于【3D 图像分类】基于 Pytorch 的 3D 立体图像分类4(多人标注的结节立体框合并和特征等级投票)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/420697

相关文章

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python视频剪辑合并操作的实现示例

《Python视频剪辑合并操作的实现示例》很多人在创作视频时都需要进行剪辑,本文主要介绍了Python视频剪辑合并操作的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录介绍安装FFmpegWindowsMACOS安装MoviePy剪切视频合并视频转换视频结论介绍

使用JavaScript将PDF页面中的标注扁平化的操作指南

《使用JavaScript将PDF页面中的标注扁平化的操作指南》扁平化(flatten)操作可以将标注作为矢量图形包含在PDF页面的内容中,使其不可编辑,DynamsoftDocumentViewer... 目录使用Dynamsoft Document Viewer打开一个PDF文件并启用标注添加功能扁平化

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C