机器学习基础-23:矩阵理论(L0/L1/L2范数等)

2023-11-23 11:18

本文主要是介绍机器学习基础-23:矩阵理论(L0/L1/L2范数等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习基础-23:矩阵理论(L0/L1/L2范数等)

机器学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!

线性代数是数学的一个分支,广泛应用于科学和工程领域。线性代数和矩阵理论是机器学习和人工智能的重要数学基础。有短板的请补课,推荐《The Matrix Cookbook》。线性代数主要涉及矩阵理论,本节围绕矩阵理论展开。

1 标量、向量和张量

标量: 一个标量就是一个单独的数字
向量: 一个向量就是一列数字。例如 x= [x1,x2,…xn]
矩阵:一个矩阵就是一个二维数组 A = [[A11,A12], [A21,A22]]
张量: 一个数组中的元素分布于若干坐标的规则网格中,称为张量

2 矩阵和矩阵的性质

矩阵乘积具有分配律: A(B+C)=AB+AC
矩阵乘积具有结合律: A(BC)=(AB)C
单位矩阵和逆矩阵
对角矩阵
线性相关

3 范数

衡量一个向量的大小,在机器学习中称为范数。范数的定义为:
∣ ∣ x ∣ ∣ p = ( ∑ n = 1 N ∣ x i ∣ p ) 1 / p ||x||_p = (\sum_{n=1}^N|x_i|^p)^1/p xp=(n=1Nxip)1/p

L0范数: 向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0。换句话说,就是让参数W是稀疏的。稀疏矩阵、稀疏编码、稀疏网络可是机器学习中大火的概念哦。稀疏规则化一个最吸引人的特性是特征的自动选择,自动去掉没有信息的特性(把这些特征对应的权重置为0)。

L1范数: 向量中各个元素绝对值之和,论文中集万千宠爱的稀疏规则算子(Lasso regularization)。L1范数会使权值稀疏。L1范数和L0范数可以实现稀疏,L1范数因具有比L0范数更好的优化求解特性而被广泛应用。

L2 范数称为欧几里得范数。L2 范数的经典特性是权值衰减(Weight Decay)。在回归算法中,使用L2 范数的回归称为岭回归(Ridge Regression)。L2范数可以限制模型空间,从而在一定程度上避免了过拟合。从学习理论的角度来说,L2范数可以防止过拟合,提升模型的泛化能力。

4 特征分解

我们通过分解质因数可以发现部分整数的内在性质,同样我们通过矩阵分解可以发现组成矩阵的数字元素的性质。特征分解将矩阵分解成一组特征向量和特征值。

5 奇异值分解

奇异值分解顾名思义,将矩阵分解为奇异向量和奇异值。通过奇异值分解我们会得到与特征分解相同类型的信息。

系列文章

  • 深度学习原理与实践(开源图书)-总目录
  • 机器学习原理与实践(开源图书)-总目录
  • Github: 机器学习&深度学习理论与实践(开源图书)

参考文献

  • [1] Ian Goodfellow, Yoshua Bengio. Deep Learning. MIT Press. 2016.
  • [2] 焦李成等. 深度学习、优化与识别. 清华大学出版社. 2017.
  • [3] 佩德罗·多明戈斯. 终极算法-机器学习和人工智能如何重塑世界. 中信出版社. 2018.
  • [4] 雷.库兹韦尔. 人工智能的未来-揭示人类思维的奥秘. 浙江人民出版社. 2016.

这篇关于机器学习基础-23:矩阵理论(L0/L1/L2范数等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417554

相关文章

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert