Elasticsearch:将最大内积引入 Lucene

2023-11-23 06:15

本文主要是介绍Elasticsearch:将最大内积引入 Lucene,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Benjamin Trent

目前,Lucene 限制 dot_product (点积) 只能在标准化向量上使用。 归一化迫使所有向量幅度等于一。 虽然在许多情况下这是可以接受的,但它可能会导致某些数据集的相关性问题。 一个典型的例子是 Cohere 构建的嵌入(embeddings)。 它们的向量使用幅度来提供更多相关信息。

那么,为什么不允许点积中存在非归一化向量,从而实现最大内积呢? 有什么大不了的?

负值和 Lucene 优化

Lucene要求分数非负,因此在析取 (disjunctive query) 查询中多匹配一个子句只能使分数更高,而不是更低。 这实际上对于动态修剪优化(例如 block-max WAND)非常重要,如果某些子句可能产生负分数,则其效率会大大降低。 此要求如何影响非标准化向量?

在归一化情况下,所有向量都在单位球面上。 这允许通过简单的缩放来处理负分数。

图 1:二维单位球体(例如单位圆)中的两个相反的二维向量。 在这里计算点积时,最糟糕的情况是 -1 = [1, 0] * [-1, 0]。 Lucene 通过向结果加 1 来解决这一问题。

当向量保持其大小时,可能值的范围是未知的。

图 2:计算这些向量的点积时 [2, 2] \* [-5, -5] = -20

为了允许 Lucene 将 blockMax WAND 与非标准化向量结合使用,我们必须缩放分数。 这是一个相当简单的解决方案。 Lucene 将使用简单的分段函数缩放非标准化向量:

if (dotProduct < 0) {return 1 / (1 + -1 * dotProduct);
}
return dotProduct + 1;

现在,所有负分数都在 0 -1 之间,所有正分数都在 1 以上。这仍然可以确保较高的值意味着更好的匹配并消除负分数。 很简单,但这不是最后的障碍。

三角形问题

最大内积不遵循与简单欧几里得空间相同的规则。 三角不等式的简单假设知识被抛弃。 不直观的是,向量不再最接近其自身。 这可能会令人不安。 Lucene 的向量底层索引结构是分层可导航小世界 (HNSW)。 这是基于图的算法,它可能依赖于欧几里得空间假设。 或者在非欧几里得空间中探索图会太慢吗?

一些研究表明,快速搜索需要转换到欧几里得空间。 其他人则经历了更新向量存储以强制转换为欧几里得空间的麻烦。

这导致我们停下来深入挖掘一些数据。 关键问题是:HNSW 是否通过最大内积搜索提供良好的召回率和延迟? 虽然 HNSW 最初的论文和其他已发表的研究表明确实如此,但我们需要进行尽职调查。

我们进行的实验很简单。 所有的实验都是在真实数据集或稍微修改的真实数据集上进行的。 这对于基准测试至关重要,因为现代神经网络创建符合特定特征的向量(请参阅本文第 7.8 节中的讨论)。 我们测量了非标准化向量的延迟(以毫秒为单位)与召回率。 将数字与具有相同测量值但采用欧几里德空间变换的数字进行比较。 在每种情况下,向量都被索引到 Lucene 的 HNSW 实现中,并且我们测量了 1000 次查询迭代。 每个数据集考虑了三种单独的情况:按大小顺序插入的数据(从小到大)、按随机顺序插入的数据以及按相反顺序插入的数据(从大到小)。

以下是 Cohere 真实数据集的一些结果:

图 3:以下是嵌入维基百科文章的 Cohere 多语言模型的结果。 可在 HuggingFace 上找到。 前 10 万份文档已建立索引并进行了测试。

图 4:这是 Cohere 在维基百科上的英语和日语嵌入的混合。 这两个数据集都可以在 HuggingFace 上找到。

我们还针对一些合成数据集进行了测试,以确保我们的严谨性。 我们使用 e5-small-v2 创建了一个数据集,并通过不同的统计分布缩放了向量的大小。 为了简洁起见,我将仅显示两个分布。

图 5: 幅度  Pareto distribution 。 pareto distribution 具有“肥尾”,这意味着分布的一部分的幅度比其他部分大得多。

图 6:幅度的伽马分布。 这种分布可能具有很高的方差,并使其在我们的实验中独一无二。

在我们所有的实验中,唯一需要进行转换的是使用伽玛分布创建的合成数据集。 即使这样,向量也必须以相反的顺序插入,首先是最大幅度,以证明变换的合理性。 这些都是例外情况。

如果你想了解所有实验以及整个过程中的所有错误和改进,请参阅 Lucene Github 问题,其中包含所有详细信息(以及过程中的错误)。 这是一个开放式研究和开发的项目!

结论

这是一个相当长的旅程,需要进行多次调查才能确保 Lucene 能够支持最大内积。 我们相信数据不言自明。 无需进行重大转换或对 Lucene 进行重大更改。 所有这些工作将很快解锁 Elasticsearch 的最大内积支持,并允许 Cohere 提供的模型成为 Elastic Stack 中的一等公民。

注:最大内积已经在 8.11 中进行了支持!

原文:Bringing Maximum-Inner-Product into Lucene — Elastic Search Labs

这篇关于Elasticsearch:将最大内积引入 Lucene的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415941

相关文章

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3422 有流量限制的最小费用流 反用求最大 + 拆点

题意: 给一个n*n(50 * 50) 的数字迷宫,从左上点开始走,走到右下点。 每次只能往右移一格,或者往下移一格。 每个格子,第一次到达时可以获得格子对应的数字作为奖励,再次到达则没有奖励。 问走k次这个迷宫,最大能获得多少奖励。 解析: 拆点,拿样例来说明: 3 2 1 2 3 0 2 1 1 4 2 3*3的数字迷宫,走两次最大能获得多少奖励。 将每个点拆成两个

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(

最大流、 最小费用最大流终极版模板

最大流  const int inf = 1000000000 ;const int maxn = 20000 , maxm = 500000 ;struct Edge{int v , f ,next ;Edge(){}Edge(int _v , int _f , int _next):v(_v) ,f(_f),next(_next){}};int sourse , mee

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter