R: 使用CHAMP包进行甲基化数据的差异分析(QC, CNV, DMP, DMR等)

2023-11-23 03:50

本文主要是介绍R: 使用CHAMP包进行甲基化数据的差异分析(QC, CNV, DMP, DMR等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CHAMP: 甲基化数据的差异分析

本文介绍如何使用CHAMP包对自己的甲基化数据进行分析(QC, CNV, DMP, DMR等)
包的安装

setwd('E:/wu/R')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
source("http://bioconductor.org/biocLite.R")
##if faild, try the following one
install.packages("BiocInstaller",repos="http://bioconductor.org/packages/3.7/bioc")
library(BiocInstaller)
##安装一些依赖包
biocLite(c('kernlab',"minfi","ChAMPdata","Illumina450ProbeVariants.db","sva","IlluminaHumanMethylation450kmanifest","limma","RPMM","DNAcopy","preprocessCore","impute","marray","wateRmelon","goseq","plyr","GenomicRanges","RefFreeEWAS","qvalue","isva","doParallel","bumphunter","quadprog","shiny","shinythemes","plotly","RColorBrewer","DMRcate","dendextend","IlluminaHumanMethylationEPICmanifest","FEM","matrixStats","missMethyl","combinat"))
##安装ChAMP
biocLite("ChAMP")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
library('ChAMP')

安装好依赖的包之后,就可以进行分析了。在分析过程中,如果有提示说缺少某某包,那就另外再使用biocLite安装一下即可。

数据导入

#载入数据
testDir = "E:/wu/R/OE2018Q1084N_CNV/raw"
myLoad <- champ.load(testDir,arraytype = 'EPIC')

其中,raw文件夹内的文件为自己的850K芯片原始文件
在这里插入图片描述
Sample_Sheet.csv的内容如下:
在这里插入图片描述

质控分析

champ.QC()

该命令会直接在R的工作路径下生成一个叫CHAMP_QCimages 的文件夹,里面为质控绘图结果。
在这里插入图片描述
三张图如下所示:
在这里插入图片描述在这里插入图片描述在这里插入图片描述

标准化


myNorm <- champ.norm(arraytype="EPIC")
##myNorm <- champ.norm(beta=myLoad$beta,arraytype="EPIC",cores=5)
##cores默认3
#保存标准化数
write.csv(myNorm,file="./Normalization Data.csv",quote=F,row.names = T)

说明:该过程会自动生成一个CHAMP_Normalization 的文件夹,但是有时候往往是空的,可以使用上述代码自己保存标准化数据。

CNV 分析


##CNV分析
myCNA <- champ.CNA(intensity=myLoad$beta,pheno=myLoad$pd$Sample_Group,controlGroup='control',arraytype="EPIC")
#保存差异CNV结果
write.csv(myCNA$groupResult,file="./CNV_analysis_result.csv",quote=F,row.names = F)

该过程会自动生成一个CHAMP_CNA 文件夹,里面是实验组每个样本的CNV绘图结果,如下图所示。
在这里插入图片描述
另外还可以做实验组的整体变化情况


myCNA <- champ.CNA(intensity=myLoad$beta,pheno=myLoad$pd$Sample_Group,sampleCNA = FALSE,controlGroup='control',arraytype="EPIC")

在这里插入图片描述
这个图还是比较丑的,没有conumee包绘制的图漂亮。后续会介绍conumee这个包的使用。

DMP分析


##DMP分析
myDMP <- champ.DMP(arraytype="EPIC")
##交互式结果展示
DMP.GUI()

弹出一个交互式界面,可以进行查询等操作。以下是一些界面的示意图。
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

DMR分析


myDMR <- champ.DMR(arraytype="EPIC")
DMR.GUI()

也是非常 简单的,结果与DMP分析结果类似,也是交互式界面,这里就不演示结果了。

其他的具体细节可以参考CHAMP官方网站:
http://www.bioconductor.org/packages/release/bioc/html/ChAMP.html

这篇关于R: 使用CHAMP包进行甲基化数据的差异分析(QC, CNV, DMP, DMR等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415125

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置