python-opencv 图像变换(缩放变换,平移变换,旋转变换,仿射变换,透视变换)

本文主要是介绍python-opencv 图像变换(缩放变换,平移变换,旋转变换,仿射变换,透视变换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# usr/bin/env python
# coding: utf-8##################### 对图像进行变换(旋转)
# 2018年6月17日07:33:54
import cv2
import numpy as np# 这里说一下旋转的opencv中为旋转提供的三个要素
# 旋转的中心点(center)
# 旋转角度()
# 旋转后进行放缩
# 我们可以通过cv2.getRotationMatrix2D函数得到转换矩阵img = cv2.imread('cat.jpg')
rows,cols,_ = img.shapematrix = cv2.getRotationMatrix2D((cols/2,rows/2),90,1)
# 得到变换的矩阵,通过这个矩阵再利用warpAffine来进行变换
# 第一个参数就是旋转中心,元组的形式,这里设置成相片中心
# 第二个参数90,是旋转的角度
# 第三个参数1,表示放缩的系数,1表示保持原图大小img1 = cv2.warpAffine(img,matrix,(cols,rows))cv2.imshow('img',img)
cv2.imshow('img1',img1)##################### 对图像进行变换(三点得到一个变换矩阵)
# 我们知道三点确定一个平面,我们也可以通过确定三个点的关系来得到转换矩阵
# 然后再通过warpAffine来进行变换img = cv2.imread('dog.jpg')
rows,cols,_ = img.shapepoints1 = np.float32([[50,50],[200,50],[50,200]])
points2 = np.float32([[10,100],[200,50],[100,250]])matrix = cv2.getAffineTransform(points1,points2)output = cv2.warpAffine(img,matrix,(cols,rows))cv2.imshow('input',img)
cv2.imshow('output',output)##################### 对图像进行变换(四点得到一个变换矩阵)
# 进行透视变换
# 可以先用四个点来确定一个3*3的变换矩阵(cv2.getPerspectiveTransform)
# 然后通过cv2.warpPerspective和上述矩阵对图像进行变换img = cv2.imread('cat.jpg')
rows,cols,_ = img.shape
points1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
points2 = np.float32([[0,0],[300,0],[0,300],[300,300]])matrix = cv2.getPerspectiveTransform(points1,points2)
# 将四个点组成的平面转换成另四个点组成的一个平面output = cv2.warpPerspective(img, matrix, (cols, rows))
# 通过warpPerspective函数来进行变换cv2.imshow('img',img)
cv2.imshow('output',output)
cv2.waitKey()
cv2.destroyAllWindows()

一、缩放变换

缩放就是改变图像的大小,使用cv2.resize()函数。图像的大小可以手动指定,也可以使用缩放比例。cv2.resize()支持多种插值算法,默认使用的是cv2.INTER_LINEAR(不管放大和缩小)。

缩小最适合使用:cv2.INTER_AREA,

放大最适合使用:cv2.INTER_CUBIC (慢) 或 cv2.INTER_LINEAR。

dst = cv2.resize(img,None,fx=2,fy=2,interpolation = cv2.INTER_AREA)
或者
dst = cv2.resize(img,(2*width,2*height),interpolation = cv2.INTER_AREA)

在坐标轴中以原点为中心的放大与缩小S倍是指对其x轴方向的横坐标放缩成原坐标的横坐标距离中心点(0,0)的距离的S倍并对其y轴方向的横坐标放缩成原坐标的纵坐标距离原点的距离的S倍。其中若S大于1则表示增大,若小于1则表示缩小。放缩在矩阵中的表示为:

 坐标(x,y)在坐标轴中以任意一点的坐标(x0,y0)为中心在水平和垂直方向上放缩S倍,放缩后的坐标为

用矩阵可以表示为:

 

二、平移变换

平移是最简单的仿射变换如将空间坐标(x,y)沿着x轴移动100,沿着y轴移动200。平移后的坐标为(x+100,y+200)。将这个过程一般化后,假设任意的空间坐标(x,y)先沿着x轴平移Px再沿着y轴平移Py。得到的坐标为(x+Px,y+Py)。用矩阵表示这个平移过程为:

对于Px和Py若大于0则表示沿着轴正向移动,若小于0则表示沿着轴负向移动。其中,px为x的偏移量,py是y轴的偏移量,单位为像素。

cv2.warpAffine()的第三个参数是输出图像的大小。第二个参数是变换矩阵。第三个参数是

M = np.float32([[1,0,100],[0,1,50]])
dst = cv2.warpAffine(img,M,(cols,rows),boderValue = (255,255,255))
cv2.warpAffine(src,M,dsize[,flags[,borderMode[,borderValue ]]])
'''
参数	释义
src	图像矩阵
M	2行3列的仿射变换矩阵
dsize	一个二元元组,输出图像的大小
flags	插值法:INTE_NEAREST、INTE_LINEAR(默认)等
borderMode	填充模式,如:BORDER_CONSTANT等
borderValue	当borderMode=BORDER_CONSTANT时的填充值
'''

 

三、旋转变换

在opencv中提供了cv2.getRotationMatrix2D函数获得变换矩阵。第一参数指定旋转圆点;第二个参数指定旋转角度;第二个参数指定缩放比例

 坐标(x,y)绕原点顺时针旋转α(α>0),cosΘ=x/p sinΘ=y/p.其中p代表(x,y)到中心点(0,0)的距离。则
cos(Θ+α)=cosΘcosα-sinΘsinα=(x/p)cosα -(y/p)sinα=Ex/p
sin(Θ+α)=sinΘcosα+cosΘsinα=(y/p)cosα -(y/p)sinα=Ey/p
化解以上公式,使用矩阵表示为:

四、仿射变换

opencv提供了函数cv2.getAffineTransform()来创建一个2*3的矩阵,该矩阵传递给cv2.warpAffine()。该函数语法格式为:

retval = cv.getAffineTransform(src, dst)
'''
src:输入图像的三个点坐标
dst:输出图像的三个点坐标
三个点分别对应左上角、右上角、左下角
'''
查看如下放射变换实例:
import numpy as np
import cv2 as cvimg = cv.imread(r'Lena.png', 1)
rows, cols, channels = img.shape
p1 = np.float32([[0,0], [cols-1,0], [0,rows-1]])
p2 = np.float32([[0,rows*0.3], [cols*0.8,rows*0.2], [cols*0.15,rows*0.7]])
M = cv.getAffineTransform(p1, p2)
dst = cv.warpAffine(img, M, (cols,rows))
cv.imshow('original', img)
cv.imshow('result', dst)
cv.waitKey(0)
cv.destroyAllWindows()

imageimage 

 

五、透视变换

参考

上述仿射变换可以将矩形映射成任意平行四边形,各边仍保持平行;而透视变换可以将矩形映射为任意四边形,直线仍保持直线。

由于不再是平行四边形,需提供四个顶点。

透视变换需要3×3的变换矩阵,直线在变换后还是保持直线。为了构造变换矩阵,你需要输入图像的4个点和对应的要输出图像的4个点;要求这4个点其中3个点不共线。使用cv2.getPerspectiveTransform函数构造透视变换矩阵。

透视变换通过函数cv2.getPerspectiveTransform()实现,语法为:

dst = cv2.getPerspectiveTransform(src, M, dsize[, flags[, borderMode[, borderValue]]])
'''
dst:透视后的输出图像,dsize决定输出图像大小
src:输入图像
M:3*3变换矩阵
flags:插值方法,默认为INTER_LINEAR
borderMode:边类型,默认为BORDER_CONSTANT
borderValue:边界值,默认为0
'''

透视变换通过函数cv2.getPerspectiveTransform()来生成转换矩阵,需输入输入图像和输出图像的四个顶点的坐标。

import numpy as np
import cv2 as cvimg = cv.imread(r'Lena.png', 1)
rows, cols, channels = img.shape
p1 = np.float32([[0,0], [cols-1,0], [0,rows-1], [rows-1,cols-1]])
p2 = np.float32([[0,rows*0.3], [cols*0.8,rows*0.2], [cols*0.15,rows*0.7], [cols*0.8,rows*0.8]])
M = cv.getPerspectiveTransform(p1,p2)
dst = cv.warpPerspective(img, M, (cols, rows))
cv.imshow('original', img)
cv.imshow('result', dst)
cv.waitKey(0)
cv.destroyAllWindows()

imageimage

分类: 图像处理, opencv

这篇关于python-opencv 图像变换(缩放变换,平移变换,旋转变换,仿射变换,透视变换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/399468

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.