python-opencv 图像变换(缩放变换,平移变换,旋转变换,仿射变换,透视变换)

本文主要是介绍python-opencv 图像变换(缩放变换,平移变换,旋转变换,仿射变换,透视变换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# usr/bin/env python
# coding: utf-8##################### 对图像进行变换(旋转)
# 2018年6月17日07:33:54
import cv2
import numpy as np# 这里说一下旋转的opencv中为旋转提供的三个要素
# 旋转的中心点(center)
# 旋转角度()
# 旋转后进行放缩
# 我们可以通过cv2.getRotationMatrix2D函数得到转换矩阵img = cv2.imread('cat.jpg')
rows,cols,_ = img.shapematrix = cv2.getRotationMatrix2D((cols/2,rows/2),90,1)
# 得到变换的矩阵,通过这个矩阵再利用warpAffine来进行变换
# 第一个参数就是旋转中心,元组的形式,这里设置成相片中心
# 第二个参数90,是旋转的角度
# 第三个参数1,表示放缩的系数,1表示保持原图大小img1 = cv2.warpAffine(img,matrix,(cols,rows))cv2.imshow('img',img)
cv2.imshow('img1',img1)##################### 对图像进行变换(三点得到一个变换矩阵)
# 我们知道三点确定一个平面,我们也可以通过确定三个点的关系来得到转换矩阵
# 然后再通过warpAffine来进行变换img = cv2.imread('dog.jpg')
rows,cols,_ = img.shapepoints1 = np.float32([[50,50],[200,50],[50,200]])
points2 = np.float32([[10,100],[200,50],[100,250]])matrix = cv2.getAffineTransform(points1,points2)output = cv2.warpAffine(img,matrix,(cols,rows))cv2.imshow('input',img)
cv2.imshow('output',output)##################### 对图像进行变换(四点得到一个变换矩阵)
# 进行透视变换
# 可以先用四个点来确定一个3*3的变换矩阵(cv2.getPerspectiveTransform)
# 然后通过cv2.warpPerspective和上述矩阵对图像进行变换img = cv2.imread('cat.jpg')
rows,cols,_ = img.shape
points1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
points2 = np.float32([[0,0],[300,0],[0,300],[300,300]])matrix = cv2.getPerspectiveTransform(points1,points2)
# 将四个点组成的平面转换成另四个点组成的一个平面output = cv2.warpPerspective(img, matrix, (cols, rows))
# 通过warpPerspective函数来进行变换cv2.imshow('img',img)
cv2.imshow('output',output)
cv2.waitKey()
cv2.destroyAllWindows()

一、缩放变换

缩放就是改变图像的大小,使用cv2.resize()函数。图像的大小可以手动指定,也可以使用缩放比例。cv2.resize()支持多种插值算法,默认使用的是cv2.INTER_LINEAR(不管放大和缩小)。

缩小最适合使用:cv2.INTER_AREA,

放大最适合使用:cv2.INTER_CUBIC (慢) 或 cv2.INTER_LINEAR。

dst = cv2.resize(img,None,fx=2,fy=2,interpolation = cv2.INTER_AREA)
或者
dst = cv2.resize(img,(2*width,2*height),interpolation = cv2.INTER_AREA)

在坐标轴中以原点为中心的放大与缩小S倍是指对其x轴方向的横坐标放缩成原坐标的横坐标距离中心点(0,0)的距离的S倍并对其y轴方向的横坐标放缩成原坐标的纵坐标距离原点的距离的S倍。其中若S大于1则表示增大,若小于1则表示缩小。放缩在矩阵中的表示为:

 坐标(x,y)在坐标轴中以任意一点的坐标(x0,y0)为中心在水平和垂直方向上放缩S倍,放缩后的坐标为

用矩阵可以表示为:

 

二、平移变换

平移是最简单的仿射变换如将空间坐标(x,y)沿着x轴移动100,沿着y轴移动200。平移后的坐标为(x+100,y+200)。将这个过程一般化后,假设任意的空间坐标(x,y)先沿着x轴平移Px再沿着y轴平移Py。得到的坐标为(x+Px,y+Py)。用矩阵表示这个平移过程为:

对于Px和Py若大于0则表示沿着轴正向移动,若小于0则表示沿着轴负向移动。其中,px为x的偏移量,py是y轴的偏移量,单位为像素。

cv2.warpAffine()的第三个参数是输出图像的大小。第二个参数是变换矩阵。第三个参数是

M = np.float32([[1,0,100],[0,1,50]])
dst = cv2.warpAffine(img,M,(cols,rows),boderValue = (255,255,255))
cv2.warpAffine(src,M,dsize[,flags[,borderMode[,borderValue ]]])
'''
参数	释义
src	图像矩阵
M	2行3列的仿射变换矩阵
dsize	一个二元元组,输出图像的大小
flags	插值法:INTE_NEAREST、INTE_LINEAR(默认)等
borderMode	填充模式,如:BORDER_CONSTANT等
borderValue	当borderMode=BORDER_CONSTANT时的填充值
'''

 

三、旋转变换

在opencv中提供了cv2.getRotationMatrix2D函数获得变换矩阵。第一参数指定旋转圆点;第二个参数指定旋转角度;第二个参数指定缩放比例

 坐标(x,y)绕原点顺时针旋转α(α>0),cosΘ=x/p sinΘ=y/p.其中p代表(x,y)到中心点(0,0)的距离。则
cos(Θ+α)=cosΘcosα-sinΘsinα=(x/p)cosα -(y/p)sinα=Ex/p
sin(Θ+α)=sinΘcosα+cosΘsinα=(y/p)cosα -(y/p)sinα=Ey/p
化解以上公式,使用矩阵表示为:

四、仿射变换

opencv提供了函数cv2.getAffineTransform()来创建一个2*3的矩阵,该矩阵传递给cv2.warpAffine()。该函数语法格式为:

retval = cv.getAffineTransform(src, dst)
'''
src:输入图像的三个点坐标
dst:输出图像的三个点坐标
三个点分别对应左上角、右上角、左下角
'''
查看如下放射变换实例:
import numpy as np
import cv2 as cvimg = cv.imread(r'Lena.png', 1)
rows, cols, channels = img.shape
p1 = np.float32([[0,0], [cols-1,0], [0,rows-1]])
p2 = np.float32([[0,rows*0.3], [cols*0.8,rows*0.2], [cols*0.15,rows*0.7]])
M = cv.getAffineTransform(p1, p2)
dst = cv.warpAffine(img, M, (cols,rows))
cv.imshow('original', img)
cv.imshow('result', dst)
cv.waitKey(0)
cv.destroyAllWindows()

imageimage 

 

五、透视变换

参考

上述仿射变换可以将矩形映射成任意平行四边形,各边仍保持平行;而透视变换可以将矩形映射为任意四边形,直线仍保持直线。

由于不再是平行四边形,需提供四个顶点。

透视变换需要3×3的变换矩阵,直线在变换后还是保持直线。为了构造变换矩阵,你需要输入图像的4个点和对应的要输出图像的4个点;要求这4个点其中3个点不共线。使用cv2.getPerspectiveTransform函数构造透视变换矩阵。

透视变换通过函数cv2.getPerspectiveTransform()实现,语法为:

dst = cv2.getPerspectiveTransform(src, M, dsize[, flags[, borderMode[, borderValue]]])
'''
dst:透视后的输出图像,dsize决定输出图像大小
src:输入图像
M:3*3变换矩阵
flags:插值方法,默认为INTER_LINEAR
borderMode:边类型,默认为BORDER_CONSTANT
borderValue:边界值,默认为0
'''

透视变换通过函数cv2.getPerspectiveTransform()来生成转换矩阵,需输入输入图像和输出图像的四个顶点的坐标。

import numpy as np
import cv2 as cvimg = cv.imread(r'Lena.png', 1)
rows, cols, channels = img.shape
p1 = np.float32([[0,0], [cols-1,0], [0,rows-1], [rows-1,cols-1]])
p2 = np.float32([[0,rows*0.3], [cols*0.8,rows*0.2], [cols*0.15,rows*0.7], [cols*0.8,rows*0.8]])
M = cv.getPerspectiveTransform(p1,p2)
dst = cv.warpPerspective(img, M, (cols, rows))
cv.imshow('original', img)
cv.imshow('result', dst)
cv.waitKey(0)
cv.destroyAllWindows()

imageimage

分类: 图像处理, opencv

这篇关于python-opencv 图像变换(缩放变换,平移变换,旋转变换,仿射变换,透视变换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/399468

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e