数值分析:对系数矩阵与向量加扰动后求出解向量

2023-11-20 14:30

本文主要是介绍数值分析:对系数矩阵与向量加扰动后求出解向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解答

    • 题目
    • 思路
    • 过程
    • 代码

题目

在这里插入图片描述

思路

将高斯消去法改写为紧凑形式,可以直接从矩阵A的元素计算出L,U元素的递推公式,因此可以使A分解为L和U。利用LU分解法,求解Ax=b等价于求解Ly=b和Ux=y。
我定义了一个创建希尔伯特矩阵的函数,通过输入行数(列数)来输出一个n阶的希尔伯特矩阵。
为了验证LU分解的正确性,我写了一个矩阵乘积函数,来验证L,U乘积是否等于原来的希尔伯特矩阵。
然后根据题干所给的条件,定义一个创建向量b的函数,以求得b向量的数值。
再根据Ly=b和Ux=y,利用python里面的线性代数计算库scipy-linalg,给出L、b求出y,再给出U、y求出x。

过程

调用hilmat函数,创建希尔伯特矩阵。输出该矩阵。
在这里插入图片描述
调用写好了的LU分解函数,求得L,U矩阵。
在这里插入图片描述
调用矩阵乘积函数,求得L和U的乘积。输出,并与H矩阵比较,数值相同,证明分解成功。
在这里插入图片描述
调用创建向量b的函数。创建好向量b后,输出向量b。
在这里插入图片描述
接下来,根据Ly=b,Ux=y,调用linalg.solve函数,先后求得y向量和x向量。

(b)x向量即为希尔伯特矩阵n=6时的解向量。
在这里插入图片描述

(c)手动对希尔伯特矩阵做元素的扰动。分四种情况讨论。
1.a22和a66都增加pow(10,-7)时,解向量如下。
在这里插入图片描述
2.a22和a66都减少pow(10,-7)时,解向量如下。
在这里插入图片描述
3.a22增加pow(10,-7),a66减少pow(10,-7)时,解向量如下。
在这里插入图片描述

4.a22减少pow(10,-7),a66增加pow(10,-7)时,解向量如下。

在这里插入图片描述

(d)扰动分2种情况。
1.b6增加pow(10,-4)时,解向量如下。
在这里插入图片描述
2.b6减少pow(10,-4)时,解向量如下。
在这里插入图片描述

(e)结论:无论是A中元素的扰动,还是向量b元素的扰动,对解向量的值影响都很大。在A改变的元素与b改变的元素在同一个量级,且A元素扰动量级是b元素扰动量级的1/1000的条件下,两种情况造成的解向量的变化范围相当。因此相对而言,A中元素的扰动对解向量的影响更大。

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 15 17:09:33 2020@author: uygfi
"""import numpy as np
import math
from scipy import linalg def matrixMul(A, B):if len(A[0]) == len(B):res = [[0] * len(B[0]) for i in range(len(A))]for i in range(len(A)):for j in range(len(B[0])):for k in range(len(B)):res[i][j] += A[i][k] * B[k][j]return resreturn ('输入矩阵有误!')def hilmat(a):#li=[[]]*ali = [[0] * a for i in range(a)]for i in range(a):for j in range(a):li[i][j]=math.pow((i+j+1),-1)return li#Doolittle分解法np.random.seed(2)
def LU_decomposition(A):n=len(A[0])L = np.zeros([n,n])U = np.zeros([n, n])for i in range(n):L[i][i]=1if i==0:U[0][0] = A[0][0]for j in range(1,n):U[0][j]=A[0][j]L[j][0]=A[j][0]/U[0][0]else:for j in range(i, n):#Utemp=0for k in range(0, i):temp = temp+L[i][k] * U[k][j]U[i][j]=A[i][j]-tempfor j in range(i+1, n):#Ltemp = 0for k in range(0, i ):temp = temp + L[j][k] * U[k][i]L[j][i] = (A[j][i] - temp)/U[i][i]return L,Udef xishu(H):#将b解出来length=len(H[0])V=[0]*lengthfor i in range(0,length):for j in range(0,length):V[i]+=H[i][j]return Vif __name__ == '__main__': H=hilmat(6)print("here is H matrix")print(H)L,U=LU_decomposition(H)print("here is L ,U")print("here is L:\n",L,'\n\n',"here is U:\n",U,'\n')ans=matrixMul(L,U)print(ans,"\n")print("here is the matrix product of L and U!\n\n",H)# LU分解b=xishu(H)print("\n",b,"\n")y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)print("---------------------------------")H[1][1]+=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]-=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")H[1][1]-=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]+=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")b=xishu(H)b[5]-=pow(10,-7)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)b[5]+=pow(10,-7)print("---------------------------------")

参考博客
https://blog.csdn.net/dgq18764215279/article/details/89201238

这篇关于数值分析:对系数矩阵与向量加扰动后求出解向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395280

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置