数值分析:对系数矩阵与向量加扰动后求出解向量

2023-11-20 14:30

本文主要是介绍数值分析:对系数矩阵与向量加扰动后求出解向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解答

    • 题目
    • 思路
    • 过程
    • 代码

题目

在这里插入图片描述

思路

将高斯消去法改写为紧凑形式,可以直接从矩阵A的元素计算出L,U元素的递推公式,因此可以使A分解为L和U。利用LU分解法,求解Ax=b等价于求解Ly=b和Ux=y。
我定义了一个创建希尔伯特矩阵的函数,通过输入行数(列数)来输出一个n阶的希尔伯特矩阵。
为了验证LU分解的正确性,我写了一个矩阵乘积函数,来验证L,U乘积是否等于原来的希尔伯特矩阵。
然后根据题干所给的条件,定义一个创建向量b的函数,以求得b向量的数值。
再根据Ly=b和Ux=y,利用python里面的线性代数计算库scipy-linalg,给出L、b求出y,再给出U、y求出x。

过程

调用hilmat函数,创建希尔伯特矩阵。输出该矩阵。
在这里插入图片描述
调用写好了的LU分解函数,求得L,U矩阵。
在这里插入图片描述
调用矩阵乘积函数,求得L和U的乘积。输出,并与H矩阵比较,数值相同,证明分解成功。
在这里插入图片描述
调用创建向量b的函数。创建好向量b后,输出向量b。
在这里插入图片描述
接下来,根据Ly=b,Ux=y,调用linalg.solve函数,先后求得y向量和x向量。

(b)x向量即为希尔伯特矩阵n=6时的解向量。
在这里插入图片描述

(c)手动对希尔伯特矩阵做元素的扰动。分四种情况讨论。
1.a22和a66都增加pow(10,-7)时,解向量如下。
在这里插入图片描述
2.a22和a66都减少pow(10,-7)时,解向量如下。
在这里插入图片描述
3.a22增加pow(10,-7),a66减少pow(10,-7)时,解向量如下。
在这里插入图片描述

4.a22减少pow(10,-7),a66增加pow(10,-7)时,解向量如下。

在这里插入图片描述

(d)扰动分2种情况。
1.b6增加pow(10,-4)时,解向量如下。
在这里插入图片描述
2.b6减少pow(10,-4)时,解向量如下。
在这里插入图片描述

(e)结论:无论是A中元素的扰动,还是向量b元素的扰动,对解向量的值影响都很大。在A改变的元素与b改变的元素在同一个量级,且A元素扰动量级是b元素扰动量级的1/1000的条件下,两种情况造成的解向量的变化范围相当。因此相对而言,A中元素的扰动对解向量的影响更大。

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 15 17:09:33 2020@author: uygfi
"""import numpy as np
import math
from scipy import linalg def matrixMul(A, B):if len(A[0]) == len(B):res = [[0] * len(B[0]) for i in range(len(A))]for i in range(len(A)):for j in range(len(B[0])):for k in range(len(B)):res[i][j] += A[i][k] * B[k][j]return resreturn ('输入矩阵有误!')def hilmat(a):#li=[[]]*ali = [[0] * a for i in range(a)]for i in range(a):for j in range(a):li[i][j]=math.pow((i+j+1),-1)return li#Doolittle分解法np.random.seed(2)
def LU_decomposition(A):n=len(A[0])L = np.zeros([n,n])U = np.zeros([n, n])for i in range(n):L[i][i]=1if i==0:U[0][0] = A[0][0]for j in range(1,n):U[0][j]=A[0][j]L[j][0]=A[j][0]/U[0][0]else:for j in range(i, n):#Utemp=0for k in range(0, i):temp = temp+L[i][k] * U[k][j]U[i][j]=A[i][j]-tempfor j in range(i+1, n):#Ltemp = 0for k in range(0, i ):temp = temp + L[j][k] * U[k][i]L[j][i] = (A[j][i] - temp)/U[i][i]return L,Udef xishu(H):#将b解出来length=len(H[0])V=[0]*lengthfor i in range(0,length):for j in range(0,length):V[i]+=H[i][j]return Vif __name__ == '__main__': H=hilmat(6)print("here is H matrix")print(H)L,U=LU_decomposition(H)print("here is L ,U")print("here is L:\n",L,'\n\n',"here is U:\n",U,'\n')ans=matrixMul(L,U)print(ans,"\n")print("here is the matrix product of L and U!\n\n",H)# LU分解b=xishu(H)print("\n",b,"\n")y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)print("---------------------------------")H[1][1]+=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]-=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")H[1][1]-=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]+=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")b=xishu(H)b[5]-=pow(10,-7)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)b[5]+=pow(10,-7)print("---------------------------------")

参考博客
https://blog.csdn.net/dgq18764215279/article/details/89201238

这篇关于数值分析:对系数矩阵与向量加扰动后求出解向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395280

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis