数值分析:对系数矩阵与向量加扰动后求出解向量

2023-11-20 14:30

本文主要是介绍数值分析:对系数矩阵与向量加扰动后求出解向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解答

    • 题目
    • 思路
    • 过程
    • 代码

题目

在这里插入图片描述

思路

将高斯消去法改写为紧凑形式,可以直接从矩阵A的元素计算出L,U元素的递推公式,因此可以使A分解为L和U。利用LU分解法,求解Ax=b等价于求解Ly=b和Ux=y。
我定义了一个创建希尔伯特矩阵的函数,通过输入行数(列数)来输出一个n阶的希尔伯特矩阵。
为了验证LU分解的正确性,我写了一个矩阵乘积函数,来验证L,U乘积是否等于原来的希尔伯特矩阵。
然后根据题干所给的条件,定义一个创建向量b的函数,以求得b向量的数值。
再根据Ly=b和Ux=y,利用python里面的线性代数计算库scipy-linalg,给出L、b求出y,再给出U、y求出x。

过程

调用hilmat函数,创建希尔伯特矩阵。输出该矩阵。
在这里插入图片描述
调用写好了的LU分解函数,求得L,U矩阵。
在这里插入图片描述
调用矩阵乘积函数,求得L和U的乘积。输出,并与H矩阵比较,数值相同,证明分解成功。
在这里插入图片描述
调用创建向量b的函数。创建好向量b后,输出向量b。
在这里插入图片描述
接下来,根据Ly=b,Ux=y,调用linalg.solve函数,先后求得y向量和x向量。

(b)x向量即为希尔伯特矩阵n=6时的解向量。
在这里插入图片描述

(c)手动对希尔伯特矩阵做元素的扰动。分四种情况讨论。
1.a22和a66都增加pow(10,-7)时,解向量如下。
在这里插入图片描述
2.a22和a66都减少pow(10,-7)时,解向量如下。
在这里插入图片描述
3.a22增加pow(10,-7),a66减少pow(10,-7)时,解向量如下。
在这里插入图片描述

4.a22减少pow(10,-7),a66增加pow(10,-7)时,解向量如下。

在这里插入图片描述

(d)扰动分2种情况。
1.b6增加pow(10,-4)时,解向量如下。
在这里插入图片描述
2.b6减少pow(10,-4)时,解向量如下。
在这里插入图片描述

(e)结论:无论是A中元素的扰动,还是向量b元素的扰动,对解向量的值影响都很大。在A改变的元素与b改变的元素在同一个量级,且A元素扰动量级是b元素扰动量级的1/1000的条件下,两种情况造成的解向量的变化范围相当。因此相对而言,A中元素的扰动对解向量的影响更大。

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 15 17:09:33 2020@author: uygfi
"""import numpy as np
import math
from scipy import linalg def matrixMul(A, B):if len(A[0]) == len(B):res = [[0] * len(B[0]) for i in range(len(A))]for i in range(len(A)):for j in range(len(B[0])):for k in range(len(B)):res[i][j] += A[i][k] * B[k][j]return resreturn ('输入矩阵有误!')def hilmat(a):#li=[[]]*ali = [[0] * a for i in range(a)]for i in range(a):for j in range(a):li[i][j]=math.pow((i+j+1),-1)return li#Doolittle分解法np.random.seed(2)
def LU_decomposition(A):n=len(A[0])L = np.zeros([n,n])U = np.zeros([n, n])for i in range(n):L[i][i]=1if i==0:U[0][0] = A[0][0]for j in range(1,n):U[0][j]=A[0][j]L[j][0]=A[j][0]/U[0][0]else:for j in range(i, n):#Utemp=0for k in range(0, i):temp = temp+L[i][k] * U[k][j]U[i][j]=A[i][j]-tempfor j in range(i+1, n):#Ltemp = 0for k in range(0, i ):temp = temp + L[j][k] * U[k][i]L[j][i] = (A[j][i] - temp)/U[i][i]return L,Udef xishu(H):#将b解出来length=len(H[0])V=[0]*lengthfor i in range(0,length):for j in range(0,length):V[i]+=H[i][j]return Vif __name__ == '__main__': H=hilmat(6)print("here is H matrix")print(H)L,U=LU_decomposition(H)print("here is L ,U")print("here is L:\n",L,'\n\n',"here is U:\n",U,'\n')ans=matrixMul(L,U)print(ans,"\n")print("here is the matrix product of L and U!\n\n",H)# LU分解b=xishu(H)print("\n",b,"\n")y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)print("---------------------------------")H[1][1]+=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]-=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")H[1][1]-=pow(10,-7)H[5][5]+=pow(10,-7)b=xishu(H)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)H[1][1]+=pow(10,-7)H[5][5]-=pow(10,-7)print("---------------------------------")b=xishu(H)b[5]-=pow(10,-7)print(b)y = linalg.solve(L, b)print("y=\n")print(y)x = linalg.solve(U, y)print("x=\n")print(x)b[5]+=pow(10,-7)print("---------------------------------")

参考博客
https://blog.csdn.net/dgq18764215279/article/details/89201238

这篇关于数值分析:对系数矩阵与向量加扰动后求出解向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395280

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C