【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解

本文主要是介绍【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解

文章目录

  • 【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解
  • 前言
  • GoogLeNet(InceptionV2)讲解
    • Batch Normalization公式
    • InceptionV2结构
    • InceptionV2特殊结构
    • GoogLeNet(InceptionV2)模型结构
  • GoogLeNet(InceptionV2) Pytorch代码
  • 完整代码
  • 总结


前言

GoogLeNet(InceptionV2)是由谷歌的Ioffe, Sergey等人在《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift【ICML-2015】》【论文地址】一文中提出的带有Batch Normalization的改进模型,即在InceptionV1的基础上于卷积层与激活函数之间插入BN层,主要特点是使归一化(标准化)成为模型架构的一部分,并为每个训练小批量数据执行归一化。


GoogLeNet(InceptionV2)讲解

Internal Covariate Shift问题: 网络训练过程伴随着参数的更新,除了输入层的数据已经人为进行归一化以外,后面模型每一层的输入数据分布是会一直发生变化的,因为上一层参数的更新将导致下一层输入数据分布的变化。当每一层的输入数据分布发生变化时,后续层需要重新适应新的输入分布,增加了训练的复杂性。随着模型的深度增加,如果输入分布的变化很大,每层特征值分布会逐渐的向激活函数的输出区间的上下两端(激活函数饱和区间)靠近,长此以往网络可能会出现梯度消失或梯度爆炸的问题,从而无法继续训练模型。此外,由于每一层的输入分布变化不稳定不一致,网络很难收敛到最优解,可能会导致网络过拟合和网络训练缓慢。
为了改善卷积神经网络中的Internal Covariate Shift(ICS)效应,解决思路便是在卷积层与激活函数之间插入Batch Normalization(BN)层,Batch Normalization的来源于白化操作,白化(Whitening)是传统机器学习里面常用的一种规范化数据分布的方法,对图像提取特征之前对图像做白化操作,让输入数据具有相同的特征分布并去除特征之间的相关性,即输入数据变换成0均值、单位方差的正态分布。BN层的目的就是使输入到中间网络层的特征图满足均值为0,方差为1的分布规律。

Batch Normalization公式

BN层的计算通常是在卷积层之后,激活函数之前,对深层网络中间的特征值(或者叫隐藏值、中间值)进行标准化。在训练过程中,BN层的标准化均值和方差的计算依赖于当前batch的均值和方差,而不是整体数据的均值和方差,然后进行了变换重构,引入了可学习参数 γ γ γ β β β
Batch Normalization的前向传播过程在训练和测试阶段有所不同。
训练阶段: BN层对每一批训练数据都进行归一化,即使用每一批数据各自的均值和方差,因此每一批数据的方差和标准差不同。Batch Normalization进行以下几个步骤:

  1. 计算 m m m个输入数据的均值: μ B ← 1 m Σ i = 1 m x i {\mu _B} \leftarrow \frac{1}{{\rm{m}}}\Sigma _{{\rm{i}} = 1}^{\rm{m}}{x_i} μBm1Σi=1mxi
  2. 计算 m m m个输入数据的方差: σ B 2 ← 1 m Σ i = 1 m ( x i − μ B ) 2 \sigma _B^2 \leftarrow \frac{1}{{\rm{m}}}\Sigma _{{\rm{i}} = 1}^{\rm{m}}{\left( {{x_i} - {\mu _B}} \right)^2} σB2m1Σi=1m(xiμB)2
  3. m m m个输入数据进行标准化(正太化): x i ∧ ← x i − μ B σ B 2 + ε \mathop {{x_i}}\limits^ \wedge \leftarrow \frac{{{x_i} - {\mu _B}}}{{\sqrt {\sigma _B^2 + \varepsilon } }} xiσB2+ε xiμB
  4. m m m个输入数据进行尺度和偏差变换: y i = γ x i ∧ + β {y_i} = \gamma \mathop {{x_i}}\limits^ \wedge + \beta yi=γxi+β

输入数据总共划分为 B B B个批量,每个批量数据量为 m m m个。

测试阶段: 一般只输入一个测试样本,使用的均值和方差是整个数据集训练后的均值和方差,通过滑动平均法计算而来。Batch Normalization进行以下几个步骤:

  1. 计算输入数据的均值: E [ x ] = E B [ μ B ] E\left[ x \right] = {E_B}\left[ {{\mu _B}} \right] E[x]=EB[μB]
  2. 计算输入数据的方差: V a r [ x ] = m m − 1 E B [ σ B 2 ] Var\left[ x \right] = \frac{{\rm{m}}}{{{\rm{m - 1}}}}{E_B}\left[ {\sigma _B^2} \right] Var[x]=m1mEB[σB2]
  3. 对输入数据进行尺度和偏差变换: y = γ V a r [ x ] + ε x + ( β − γ E [ x ] V a r [ x ] + ε ) y = \frac{\gamma }{{\sqrt {Var\left[ x \right] + \varepsilon } }}x + \left( {\beta - \frac{{\gamma E\left[ x \right]}}{{\sqrt {Var\left[ x \right] + \varepsilon } }}} \right) y=Var[x]+ε γx+(βVar[x]+ε γE[x])

Batch Normalization的反向传播
这部分看不懂问题也不大,博主也是花了半天才弄懂的,只是一堆求导

ℓ \ell 是损失值loss

1. x i ∧ {\mathop {{x_i}}\limits^ \wedge } xi的梯度: ∂ ℓ ∂ x i ∧ = ∂ ℓ ∂ y i ⋅ ∂ y i ∂ x i = ∂ ℓ ∂ y i ⋅ γ \frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }} = \frac{{\partial \ell }}{{\partial {{\rm{y}}_i}}} \cdot \frac{{\partial {{\rm{y}}_i}}}{{\partial {{\rm{x}}_i}}} = \frac{{\partial \ell }}{{\partial {{\rm{y}}_i}}} \cdot \gamma xi=yixiyi=yiγ
2. σ B 2 {\sigma _B^2} σB2的梯度: ∂ ℓ ∂ σ B 2 = { ∑ i = 1 m ∂ ℓ ∂ x i ∧ ∂ x i ∧ ∂ σ B 2 ∂ x i ∧ ∂ σ B 2 = ( x i − μ B ) − 1 2 ( σ B 2 + ε ) − 3 2 = ∑ i = 1 m ∂ ℓ ∂ x i ∧ ⋅ ( x i − μ B ) − 1 2 ( σ B 2 + ε ) − 3 2 \frac{{\partial \ell }}{{\partial \sigma _B^2}} = \left\{ {\begin{array}{c} {\sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }}\frac{{\partial \mathop {{x_i}}\limits^ \wedge }}{{\partial \sigma _B^2}}}\\ {\frac{{\partial \mathop {{x_i}}\limits^ \wedge }}{{\partial \sigma _B^2}} = \left( {{x_i} - {\mu _B}} \right)\frac{{ - 1}}{2}{{\left( {\sigma _B^2 + \varepsilon } \right)}^{\frac{{ - 3}}{2}}}} \end{array}} \right. = \sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }} \cdot \left( {{x_i} - {\mu _B}} \right)\frac{{ - 1}}{2}{\left( {\sigma _B^2 + \varepsilon } \right)^{\frac{{ - 3}}{2}}} σB2= i=1mxiσB2xiσB2xi=(xiμB)21(σB2+ε)23=i=1mxi(xiμB)21(σB2+ε)23
3. μ B {\mu _B} μB的梯度: ∂ ℓ ∂ μ B = { ∑ i = 1 m ∂ ℓ ∂ x i ∧ ∂ x i ∧ ∂ μ B + ∂ ℓ ∂ σ B 2 ∂ σ B 2 ∂ μ B ∂ x i ∧ ∂ μ B = − 1 σ B 2 + ε ∂ σ B 2 ∂ μ B = ∑ i = 1 m − 2 ( x i − μ B ) m = ∑ i = 1 m ∂ ℓ ∂ x i ∧ ⋅ − 1 σ B 2 + ε + ∂ ℓ ∂ σ B 2 ⋅ ∑ i = 1 m − 2 ( x i − μ B ) m \frac{{\partial \ell }}{{\partial {\mu _B}}} = \left\{ {\begin{array}{c} {\sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }}\frac{{\partial \mathop {{x_i}}\limits^ \wedge }}{{\partial {\mu _B}}} + \frac{{\partial \ell }}{{\partial \sigma _B^2}}\frac{{\partial \sigma _B^2}}{{\partial {\mu _B}}}}\\ {\frac{{\partial \mathop {{x_i}}\limits^ \wedge }}{{\partial {\mu _B}}} = \frac{{ - 1}}{{\sqrt {\sigma _B^2 + \varepsilon } }}}\\ {\frac{{\partial \sigma _B^2}}{{\partial {\mu _B}}} = \sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{ - 2\left( {{x_i} - {\mu _B}} \right)}}{m}} \end{array}} \right. = \sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }} \cdot \frac{{ - 1}}{{\sqrt {\sigma _B^2 + \varepsilon } }} + \frac{{\partial \ell }}{{\partial \sigma _B^2}} \cdot \sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{ - 2\left( {{x_i} - {\mu _B}} \right)}}{m} μB= i=1mxiμBxi+σB2μBσB2μBxi=σB2+ε 1μBσB2=i=1mm2(xiμB)=i=1mxiσB2+ε 1+σB2i=1mm2(xiμB)
4. x i {x_i} xi的梯度: ∂ ℓ ∂ x i = { ∂ ℓ ∂ x i ∧ ∂ x i ∧ ∂ x i + ∂ ℓ σ B 2 σ B 2 ∂ x i + ∂ ℓ ∂ μ B ∂ μ B ∂ x i ∂ x i ∧ ∂ x i = 1 σ B 2 + ε σ B 2 ∂ x i = 2 m ( x i − μ B ) ( 1 − 1 m ) + 2 m ∑ k = 1 , k ! = i m ( x k − μ B ) ( − 1 m ) = 2 m ( x i − μ B ) + 2 m ∑ k = 1 m ( x k − μ B ) ( − 1 m ) = 2 m ( x i − μ B ) + 0 ∂ μ B ∂ x i = 1 m = ∂ ℓ ∂ x i ∧ ⋅ 1 σ B 2 + ε + ∂ ℓ σ B 2 ⋅ 2 m ( x i − μ B ) + ∂ ℓ ∂ μ B 1 m \frac{{\partial \ell }}{{\partial {x_i}}} = \left\{ {\begin{array}{c} {\frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }}\frac{{\partial \mathop {{x_i}}\limits^ \wedge }}{{\partial {x_i}}} + \frac{{\partial \ell }}{{\sigma _B^2}}\frac{{\sigma _B^2}}{{\partial {x_i}}} + \frac{{\partial \ell }}{{\partial {\mu _B}}}\frac{{\partial {\mu _B}}}{{\partial {x_i}}}}\\ {\frac{{\partial \mathop {{x_i}}\limits^ \wedge }}{{\partial {x_i}}} = \frac{1}{{\sqrt {\sigma _B^2 + \varepsilon } }}}\\ {\frac{{\sigma _B^2}}{{\partial {x_i}}} = \frac{2}{m}\left( {{x_i} - {\mu _B}} \right)\left( {1 - \frac{1}{m}} \right) + \frac{2}{m}\sum _{{\rm{k}} = 1,k! = i}^{\rm{m}}\left( {{x_{\rm{k}}} - {\mu _B}} \right)\left( { - \frac{1}{m}} \right) = \frac{2}{m}\left( {{x_i} - {\mu _B}} \right) + \frac{2}{m}\sum _{{\rm{k}} = 1}^{\rm{m}}\left( {{x_{\rm{k}}} - {\mu _B}} \right)\left( { - \frac{1}{m}} \right) = \frac{2}{m}\left( {{x_i} - {\mu _B}} \right)}+0\\ {\frac{{\partial {\mu _B}}}{{\partial {x_i}}} = \frac{1}{m}} \end{array} = } \right.\frac{{\partial \ell }}{{\partial \mathop {{x_i}}\limits^ \wedge }} \cdot \frac{1}{{\sqrt {\sigma _B^2 + \varepsilon } }} + \frac{{\partial \ell }}{{\sigma _B^2}} \cdot \frac{2}{m}\left( {{x_i} - {\mu _B}} \right) + \frac{{\partial \ell }}{{\partial {\mu _B}}}\frac{1}{m} xi= xixixi+σB2xiσB2+μBxiμBxixi=σB2+ε 1xiσB2=m2(xiμB)(1m1)+m2k=1,k!=im(xkμB)(m1)=m2(xiμB)+m2k=1m(xkμB)(m1)=m2(xiμB)+0xiμB=m1=xiσB2+ε 1+σB2m2(xiμB)+μBm1
5. γ {\gamma } γ的梯度: ∂ ℓ ∂ γ = ∑ i = 1 m ∂ ℓ ∂ y i ⋅ x i ∧ \frac{{\partial \ell }}{{\partial \gamma }} = \sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{\partial \ell }}{{\partial {{\rm{y}}_i}}} \cdot \mathop {{x_i}}\limits^ \wedge γ=i=1myixi
6. β {\beta } β的梯度: ∂ ℓ ∂ β = ∑ i = 1 m ∂ ℓ ∂ y i \frac{{\partial \ell }}{{\partial \beta }} = \sum _{{\rm{i}} = 1}^{\rm{m}}\frac{{\partial \ell }}{{\partial {{\rm{y}}_i}}} β=i=1myi

InceptionV2结构

在VggNet中就提出了用小卷积核替代大卷积核,在保持感受野范围一致的前提下又减少了参数量。VggNet中通过堆叠俩个3×3的卷积核可以等效替代一个5×5的卷积核,堆叠三个3×3的卷积核可以等效替代一个7×7的卷积核,InceptionV2借鉴了这种思想将InceptionV1结构中的5×5卷积核替换为2个3×3卷积核。

InceptionV2特殊结构

在中间层中,出现了部分特殊的InceptionV2结构,该结构舍弃了1×1卷积层分支,而在池化分支部分同样舍弃了1×1卷积层,并且该结构的输出特征图的尺寸会缩小为输入特征图尺寸的一半。

GoogLeNet(InceptionV2)模型结构

下图是原论文给出的关于 GoogLeNet(InceptionV2)模型结构的详细示意图:

GoogLeNet(InceptionV2)模型舍弃了辅助分类器分支
GoogLeNet在图像分类中分为两部分:backbone部分: 主要由InceptionV2模块、卷积层和池化层(汇聚层)组成,分类器部分: 由全连接层组成。

读者注意了,原始论文标注的通道数有一部分是错的,写代码时候对应不上。

博主仿造GoogLeNet(InceptionV1)的结构绘制了以下GoogLeNet(InceptionV2)的结构。


GoogLeNet(InceptionV2) Pytorch代码

卷积层组: 卷积层+BN层+激活函数

# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)self.bn = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return x

InceptionV1模块: 卷积层组+池化层

# InceptionV2:BasicConv2d+MaxPool2d
class InceptionV2A(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2, pool_proj):super(InceptionV2A, self).__init__()# 1×1卷积self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# 1×1卷积+3×3卷积self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小)# 1×1卷积++3×3卷积+3×3卷积self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=3, padding=1),BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, padding=1)         # 保证输出大小等于输入大小)# 3×3池化+1×1卷积self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)

InceptionV1特殊模块(三分支): 卷积层组+池化层

# InceptionV2:BasicConv2d+MaxPool2d
class InceptionV2B(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2, pool_proj):super(InceptionV2B, self).__init__()# ch1x1:没有1×1卷积# 1×1卷积+3×3卷积,步长为2self.branch1 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, stride=2, padding=1)   # 保证输出大小等于输入大小)# 1×1卷积+3×3卷积+3×3卷积,步长为2self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=3, padding=1),   # 保证输出大小等于输入大小BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, stride=2, padding=1)         # 保证输出大小等于输入大小)# 3×3池化,步长为2self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# pool_proj:池化层后不再接卷积层

完整代码

import torch.nn as nn
import torch
import torch.nn.functional as F
from torchsummary import summaryclass GoogLeNetV2(nn.Module):def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):super(GoogLeNetV2, self).__init__()self.aux_logits = aux_logitsself.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.conv2 = BasicConv2d(64, 64, kernel_size=1)self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception3a = InceptionV2A(192, 64, 64, 64, 64, 96, 32)self.inception3b = InceptionV2A(256, 64, 64, 96, 64, 96, 64)self.inception3c = InceptionV2B(320, 0, 128, 160, 64, 96, 0)self.inception4a = InceptionV2A(576, 224, 64, 96, 96, 128, 128)self.inception4b = InceptionV2A(576, 192, 96, 128, 96, 128, 128)self.inception4c = InceptionV2A(576, 160, 128, 160, 128, 128, 128)self.inception4d = InceptionV2A(576, 96, 128, 192, 160, 160, 128)self.inception4e = InceptionV2B(576, 0, 128, 192, 192, 256, 0)self.inception5a = InceptionV2A(1024, 352, 192, 320, 160, 224, 128)self.inception5b = InceptionV2A(1024, 352, 192, 320, 160, 224, 128)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.dropout = nn.Dropout(0.4)self.fc = nn.Linear(1024, num_classes)if init_weights:self._initialize_weights()def forward(self, x):# N x 3 x 224 x 224x = self.conv1(x)# N x 64 x 112 x 112x = self.maxpool1(x)# N x 64 x 56 x 56x = self.conv2(x)# N x 64 x 56 x 56x = self.conv3(x)# N x 192 x 56 x 56x = self.maxpool2(x)# N x 192 x 28 x 28x = self.inception3a(x)# N x 256 x 28 x 28x = self.inception3b(x)# N x 480 x 28 x 28x = self.inception3c(x)# N x 480 x 14 x 14x = self.inception4a(x)# N x 512 x 14 x 14x = self.inception4b(x)# N x 512 x 14 x 14x = self.inception4c(x)# N x 512 x 14 x 14x = self.inception4d(x)# N x 512 x 14 x 14x = self.inception4e(x)# N x 832 x 7 x 7x = self.inception5a(x)# N x 832 x 7 x 7x = self.inception5b(x)# N x 1024 x 7 x 7x = self.avgpool(x)# N x 1024 x 1 x 1x = torch.flatten(x, 1)# N x 1024x = self.dropout(x)x = self.fc(x)# N x 1000(num_classes)return x# 对模型的权重进行初始化操作def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)# InceptionV2:BasicConv2d+MaxPool2d
class InceptionV2A(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2, pool_proj):super(InceptionV2A, self).__init__()# 1×1卷积self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# 1×1卷积+3×3卷积self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小)# 1×1卷积++3×3卷积+3×3卷积self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=3, padding=1),BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, padding=1)         # 保证输出大小等于输入大小)# 3×3池化+1×1卷积self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)# InceptionV2:BasicConv2d+MaxPool2d
class InceptionV2B(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2, pool_proj):super(InceptionV2B, self).__init__()# ch1x1:没有1×1卷积# 1×1卷积+3×3卷积,步长为2self.branch1 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, stride=2, padding=1)   # 保证输出大小等于输入大小)# 1×1卷积+3×3卷积+3×3卷积,步长为2self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=3, padding=1),   # 保证输出大小等于输入大小BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, stride=2, padding=1)         # 保证输出大小等于输入大小)# 3×3池化,步长为2self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# pool_proj:池化层后不再接卷积层def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)# 拼接outputs = [branch1,branch2, branch3]return torch.cat(outputs, 1)# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)self.bn = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return xif __name__ == '__main__':device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = GoogLeNetV2().to(device)summary(model, input_size=(3, 224, 224))

summary可以打印网络结构和参数,方便查看搭建好的网络结构。


总结

尽可能简单、详细的介绍了深度可分卷积的原理和卷积过程,讲解了GoogLeNet(InceptionV2)模型的结构和pytorch代码。

这篇关于【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392480

相关文章

Mysql中InnoDB与MyISAM索引差异详解(最新整理)

《Mysql中InnoDB与MyISAM索引差异详解(最新整理)》InnoDB和MyISAM在索引实现和特性上有差异,包括聚集索引、非聚集索引、事务支持、并发控制、覆盖索引、主键约束、外键支持和物理存... 目录1. 索引类型与数据存储方式InnoDBMyISAM2. 事务与并发控制InnoDBMyISAM

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

StarRocks索引详解(最新整理)

《StarRocks索引详解(最新整理)》StarRocks支持多种索引类型,包括主键索引、前缀索引、Bitmap索引和Bloomfilter索引,这些索引类型适用于不同场景,如唯一性约束、减少索引空... 目录1. 主键索引(Primary Key Index)2. 前缀索引(Prefix Index /

一文详解Nginx的强缓存和协商缓存

《一文详解Nginx的强缓存和协商缓存》这篇文章主要为大家详细介绍了Nginx中强缓存和协商缓存的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、强缓存(Strong Cache)1. 定义2. 响应头3. Nginx 配置示例4. 行为5. 适用场景二、协商缓存(协

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行