2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调

本文主要是介绍2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型输入无标签文本(Text without annotation),通过消耗大量计算资源预训练(Pre-train)得到一个可以读懂文本的模型,在遇到有监督的任务是微调(Fine-tune)即可。

最具代表性是BERT,预训练模型现在命名基本上是源自于动画片《芝麻街》。

 芝麻街人物

经典的预训练模型:

  • ELMo:Embeddings from Language Models
  • BERT:Bidirectional Encoder Representations from Transformers
  • 华丽分割线,命名逐渐开始离谱
  • ERNIE:Enhanced Representation through Knowledge Integration
  • Grover:Generating aRticles by Only Viewing mEtadaya Records

一、pre-train model 是什么

(一)预训练概念

预训练模型的概念并不是由BERT时才出现。

预训练的任务一般是实现 词语token -> 词向量embedding vector, vector中包含token的语义,比如我们语文中常学习的近义词,语义相近,那么要求其词向量也应该近似。

(二)多语义多语境

存在的问题:同一个token就可以指代同一个vector。解决方法Word2vec、Glove...

但是语言有无穷尽的词语,咱们现在就一直在创造新词语,如 “雪糕刺客”、“栓Q”等等新兴词汇不断迭代更新,一个新的词汇就要增加一个向量,显然是不太OK的。

那么,研究者就想到可以将词语再分,英文可以拆分为字符(FastText),中文可以拆分为单个字,或者将一个中文字看作一张图片输入CNN等模型,可以让模型学习到字的构成。

但分解为单个character后面临的就是语义多意的问题,“养只狗”、“单身狗”其中的“狗”都是狗,但是我们知道,两个“狗”其实是不同的,然鹅他们又不能完全分开,毕竟都用了一个字,其实咱们是将考虑到其语义的。

考虑上下文后,就诞生了语境词向量(Contextualized Word Embedding),输入模型的是整个句子,模型会阅读上下文,而不是仅仅考虑单个token,考虑语境后得到一个词向量表示。【Encoder行为】

语境词向量的模型一般模型会由多层组成,层结构常使用LSTM、Self-attention layers或者一些Tree-based model(与文法相关)。但Tree-base Model经过检验效果不突出,在文法结构严谨(解决数学公式)时,效果突出。

李老师列举了“苹果”在10个句子中的向量表示,两两计算相似度,得到一个10*10的混淆矩阵。可以明显观察到,水果苹果和苹果公司两个苹果语义有所区别。

预训练模型训练参数逐渐增加,网络结构逐渐复杂,各个公司都争相发布“全球最大预训练模型”。

(三)穷人的BERT

预训练模型参数量大,在训练时会消耗大量计算资源,都是一些互联网公司在做,像我们这些“穷人”,没有那么大的GPU算力,就会搞一些丐版BERT。

举例:

  • Distill BERT

[1910.01108] DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (arxiv.org)​arxiv.org/abs/1910.01108

  • Tiny BERT

[1909.10351v5] TinyBERT: Distilling BERT for Natural Language Understanding (arxiv.org)​arxiv.org/abs/1909.10351v5

  • Mobile BERT

[2004.02984] MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices (arxiv.org)​arxiv.org/abs/2004.02984

  • ALBERT(相比于原版BERT, 12层不同参数,ALBERT12层参数完全一致,效果甚至超过原版BERT一点点)

[1909.11942] ALBERT: A Lite BERT for Self-supervised Learning of Language Representations (arxiv.org)​arxiv.org/abs/1909.11942

模型压缩技术:网络剪枝(Network Pruning)、知识蒸馏(Knowledge Distillation)、参数量化(Parameter Quantization)、架构设计(Architecture Design)

(四)架构设计(Architecture Design)

在该领域架构设计的目标,意在处理长文本语句。

典型代表,读者可以自行检索学习

  • Transformer-XL: Segment-Level Recurrence with State Reuse

[1901.02860] Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (arxiv.org)​arxiv.org/abs/1901.02860

  • Reformer

[2001.04451] Reformer: The Efficient Transformer (arxiv.org)​arxiv.org/abs/2001.04451

  • Longformer

[2004.05150] Longformer: The Long-Document Transformer (arxiv.org)​arxiv.org/abs/2004.05150

Reformer和Longformer意在降低Self-attention的复杂度。

二、怎么做 Fine-tune

预训练+微调范式是现在的主流形式,我们可以拿到大公司训练好的大模型,只需要根据自己的下游任务加一些Layer,就可以应用某一个具体的下游任务上。

预训练微调效果的实现,需要预训练模型针对该问题进行针对性设计。

(一)Input & Output

这里总结了NLP Tasks的常见输入输出。

  • Input:
    • one sentence: 直接丢进去。
    • multiple sentences: Sentence1 SEP Sentence2, 句子分割。
  • Ouput:
    • one class: 加一个 CLS,或者直接将所有Embedding表示接下游任务分类
    • class for each token
    • copy from input: 可以解决阅读理解问题,QA。
    • General Sequence: 用到Seq2Seq Model
      • v1:将预训练模型看作Encoder,将下游任务模型看作Decoder。
      • v2:给出一个特别符号 SEP,得到字符再输入到预训练模型,让预训练模型encoder-decoder。

 

 

(二)How to fine-tune

如何微调也有两种,一种是冻结预训练模型,只微调下游任务对应的Task-specific部分;另一种是连同预训练模型,将整体网络结构进行参数微调(预训练模型参数不是随机初始化,可以有效避免过拟合)。

Adaptor

        考虑到模型巨大,微调代价太大,且消耗存储大。引入Apt,只微调Pre-train Model中的一部分Apt。这样只需要存储Apt和Task specific. 此处举一个例子。

现在很多预训练模型中都是使用了Transformer的结构,研究者在Transformer结构中插入Adaptor层,通过训练微调Adaptor,而不去修改其他已经训练好的参数。

三、Why Pre-train Models?

研究者提出了GLUE指标,用来衡量机器与人在不同语言任务上的表现,随着深度学习的发展,预训练模型的迭代更新,现在预训练模型使得模型效果已经同人类水平相差无几。

四、Why Fine-tune?

EMNLP19年刊发的一篇文章做了分析,在网络模型上fine-tune与否,Training Loss变化是不同的。

在有Fine-tune的情况下,Training Loss可以很好的实现收敛,而从头训练则会出现较大的波动。

同时考虑泛化能力,因为基于预训练模型将Training Loss降低到很低,有没有可能是过拟合导致的。海拔图可以表示,如果海拔图中,变化越陡峭,模型泛化能力越差,变化越平稳,模型泛化能力越强。

这篇关于2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/387849

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss