【论文阅读】Progressive Spatio-Temporal Prototype Matching for Text-Video Retrieval

本文主要是介绍【论文阅读】Progressive Spatio-Temporal Prototype Matching for Text-Video Retrieval,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

资料链接

论文链接:https://openaccess.thecvf.com/content/ICCV2023/papers/Li_Progressive_Spatio-Temporal_Prototype_Matching_for_Text-Video_Retrieval_ICCV_2023_paper.pdf
代码链接:https://github.com/imccretrieval/prost

背景与动机

文章发表于ICCV 2023,来自中科大IMCC实验室。
文本-视频检索是近年来比较新兴的领域,随着多模态和大模型的发展,这一领域也迸发出了前所未有的潜力。目前的主流方法是学习一个joint embedding space,将视频和文本编码成特征向量,在空间中含义相近的向量的位置也是相近的,从而通过计算向量间相似度实现检索。本文梳理了近期的一些工作,主要分为以下三个方向:
细粒度匹配:单一的特征向量难以编码丰富的细节信息,需要进行更细粒度的视频文本匹配。
多模态特征:视频有着丰富的多模态信息,使用多种多模态特征可增强检索性能。
大规模预训练:近年来大规模预训练广泛应用,经过预训练的模型检索能力得到显著提升。
作者团队在这一问题上,主要着重于第一个方向的研究。

典型的解决方案是直接对齐整个视频与句子的特征,这会忽视视频内容与文本的内在关系。因此,匹配过程应当同时考虑细粒度的空间内容和各种时间语义事件。这就是细粒度的匹配。
为此,作者团队提出一种具有渐进式时空原型匹配的文本-视频学习框架。它的大致框架如下:

方法

给定一个由n个视频以及它们对应的m个文本描述组成的数据集,文本-视频检索(TVR)旨在学习一个函数,以有效地衡量模态之间的相似性。

对于文本查询,应当有:

 因此,需要强大的文本编码网络和视频编码网络来生成高质量的特征,从而实现有效的匹配。

采用 CLIP 作为骨干网络。给定输入视频,均匀地选择L个帧作为关键帧,提取连续特征:

其中是全局帧token特征,KPatch数量,D是特征维数,XiShape(K+1) × D

给定查询文本,添加开始token和结束token,输出文本token特征可以定义为:

其中,是全局文本token特征,MD分别是单词和特征维数,yiShape(M+2) × D

方法 - 总体框架

对象-短语原型匹配阶段

空间原型生成机制预测关键Patch或单词,这些Patch或单词被聚合成对象或短语原型。重要的是,优化对象-短语原型之间的局部对齐有助于模型感知空间细节。

事件-句子原型匹配阶段

设计了一个时间原型生成机制,将帧内对象与帧间时间关系相互关联。这样逐步生成的事件原型可以揭示视频中的语义多样性,用于动态匹配。

方法 - 对象短语原型匹配

相较于现有方法学习一个单一的Patch-Event投影,作者团队使用分而治之的方式解耦时空建模过程。

首先进行Patch-对象和单词-短语的空间原型聚合,来揭示关键的局部细节。

分为两个步骤:

空间原型生成 Spatial Prototype GenerationSPG

对于Patch特征,首先需要生成它们的空间对象原型:

使用两个全连接(FC)层和ReLU函数来预测稀疏权重,其中No是对象原型的数目,这样就可以避免对象原型受到冗余Patch的影响,从而使得对象原型更准确、集中。

其中,Po为对象原型, ShapeNo×D

对于文本,同样借鉴SPG机制,并设计了一个类似的网络结构来聚合单词标记,生成短语原型

对象-短语匹配 Object-Phrase Matching

基于上一步骤生成的对象、文本原型,实现对象-短语原型匹配。

计算每个帧内的对象-短语原型的最大相似度,将最相似的短语原型和每个对象原型关联起来,反映了跨模态的细粒度分配。

然后,对于多帧对象相似度矩阵,找到跨帧序列的最大相似度分数,得到置信度更高的对象-短语匹配概率。最后将匹配得分求和,得到最终的相似性Sop

其中,No是对象原型的数量、Np是短语原型的数量、L是帧的数量。

这一部分的矩阵处理细节如下所示:

Pp与Po相乘以后,得到的矩阵首先按列取最大值,得到下面的矩阵:

它的含义是,对于每个对象原型,其与短语原型的最大相似度。

然后,对于每个关键帧都有一个上述的矩阵,在跨帧之间再取对于每个对象原型与短语原型的最大相似度,从而得到置信度更高的对象-短语匹配分数

方法 事件句子原型匹配

接下来,到了事件句子原型匹配阶段。

时间原型生成 Temporal Prototype GenerationTPG

直接基于全局帧特征获得视频级特征会导致模型不能感知局部细节,并且只能得到单一的视频级特征。

作者团队提出一种渐进式的方法,逐步将对象原型聚合到帧原型中,然后进行帧间交互,以生成各种事件原型。

首先设计一个帧解码器,将所有对象原型聚合到帧级原型中:

其中,是帧Query(Learnable),KoVo是对象原型Po的线性变换后的特征。

注意力掩码的定义是:

这一部分的矩阵处理细节如下所示:

注意观察Mf与的关联,可以理解它的作用是使得注意力仅存在于同一帧的对象原型之间,从而不受到其他帧的对象原型的干扰。

Softmax后的权重再乘以对应帧的𝑣𝑜从而得到帧原型矩阵Pf,形状为(L × D

后面使用全局帧信息Qf进行一个Residual Connection。

将帧原型pf和相应帧的原始全局特征xc相加,以增强模型的稳健性:

然后,使用一个动态事件解码器来学习Pf中的帧间关系,它可以获得不同的事件原型 来展示视频的丰富信息。

其中,是事件Query(Learnable),KfVf是帧原型Pf的线性变换后的特征。

在训练过程中,每个事件Query都学习如何自适应地聚焦于视频帧原型,而多个Query隐含地保证了一定的事件多样性。

事件句子匹配 Event-Sentence Matching

由于同一个视频通常对应多个文本语义描述,我们直接使用全局文本表示yE作为句子原型与事件原型Pe进行对齐,找到句子原型与事件原型的最大相似度,作为最终的相似性Ses

方法 – 训练与推断

训练阶段

采用InfoNCE损失函数来优化batch内的原型匹配。将文本-视频对视为正样本,同时考虑batch内的其他成对组合作为负样本:

其中,SopSes分别为来自 对象短语原型匹配 和 事件句子原型匹配阶段 的 对象-短语原型相似度 和 句子-事件原型相似度 。

推理阶段

直接对最终相似度匹配加权了时空匹配得分:
其中是空间匹配因子。

实验 评价指标与结果

Recall@K (R@K)

这个指标衡量在前K个检索结果中正确匹配的比例。

Median Rank (MdR)

中位数排名指标表示正确匹配项在所有检索结果中的中位数排名。

Mean Rank (MnR)

平均排名指标表示所有正确匹配项在所有检索结果中的平均排名。

实验 消融实验

此外,作者进行了消融实验并做出了以下分析:
  • 只使用ESPM时,R@1下降了2.6个点,证实了细粒度空间细节对于ESPM的补充作用。
  • 只使用OPPM时,模型性能仍然较差,因为其缺乏对时间的理解,无法解决关系模糊性。
  • SPG替换为TPG,性能下降说明了原始视频标记中存在冗余,SPG能够有效地过滤冗余信息。
  • TPG替换为SPG,性能下降说明了帧间信息的交互对于生成更好得到事件原型是很重要的

  • -F-M-R(移除帧解码器、attention mask、残差连接)的结果下降,表明帧内的局部对象关系和全局帧特征共同补充了全面的帧级空间信息。
  • P-PO-W(使用patch-phraseobject-word,而不是原型)表明使用原型匹配能减缓模态对齐问题。
  • F-WF-S(直接使用CLS或直接使用平均池化获得帧token)会影响信息的细节,从而降低性能。
  • 在原型数量的设置上,也进行了实验,最后确定了最好的原型配置。表明在原型太多时会引入局部噪音,而太少时则无法表达语义。
  • 同时也针对空间匹配因子β做了测试,找到了最合适的β值。表明需要同时合理地利用底层细粒度的空间信息和时间原型匹配,才能得到好的结果。

实验 定性分析

原型可视化

通过对象原型和时间原型的可视化图片,可以看见它们之间具体的匹配关系。可以看到不同的事件原型在不同帧上的权重差异很大,说明模型能够学习到时间关系。

检索结果

通过举例分析说明了对象-短语原型匹配提供了重要的细粒度空间知识,从而能够给出更好的查询结果。

总结

提出了一种新颖的文本-视频检索框架,称为ProST,将匹配过程分解为互补的对象-短语和事件-句子原型对齐。

在对象-短语原型匹配阶段,设计了空间原型生成机制,以便专注于重要的视频内容并加强精细的空间对齐。

在事件-句子原型匹配阶段,他们使用时间原型生成机制逐渐生成多样化的事件原型,并学习动态的一对多关系。

希望通过这篇论文不仅能够提供有关互补的时空匹配的重要性的见解,还能够促进未来的研究,通过解决设计缺陷而不是主要是尝试和错误来推动文本-视频检索领域的进展。

个人感受

读完这篇文章,唯一的感觉就是太花了,实在是太花了。学习之路任重而道远!

这篇关于【论文阅读】Progressive Spatio-Temporal Prototype Matching for Text-Video Retrieval的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/387634

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

Apple quietly slips WebRTC audio, video into Safari's WebKit spec

转自:http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-into-safaris-webkit-spec/?from=timeline&isappinstalled=0 http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin