评价最小二乘法回归模型的优劣用什么方法?_解决多重共线性之岭回归分析

本文主要是介绍评价最小二乘法回归模型的优劣用什么方法?_解决多重共线性之岭回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

61e49725ca4946bc3067adc6d05785bc.png

上篇文章,我们介绍了几种处理共线性的方法。比如逐步回归法、手动剔除变量法是最常使用的方法,但是往往使用这类方法会剔除掉我们想要研究的自变量,导致自己希望研究的变量无法得到研究。因而,此时就需要使用更为科学的处理方法即岭回归。

岭回归

岭回归分析(Ridge Regression)是一种改良的最小二乘法,其通过放弃最小二乘法的无偏性,以损失部分信息为代价来寻找效果稍差但回归系数更符合实际情况的模型方程。

简单来说,岭回归是通过引入k个单位阵,使回归系数可以估计,得到的回归估计值要比简单线性回归系数更加稳定,也更加接近真实情况。虽然引入单位阵会导致信息丢失,但同时也换来回归模型的合理估计。

分析步骤

岭回归分析步骤共为2步:(1)结合岭迹图寻找最佳K值;(2)输入K值进行回归建模。

第一步:拖入数据,生成岭迹图,寻找最合适的K值。

c0cd972b81ff5efcc7572dc6ba206921.png

K值的选择原则是各个自变量的标准化回归系数趋于稳定时的最小K值。K值越小则偏差越小,当K值为0时则为普通线性OLS回归;SPSSAU提供K值智能建议,也可通过主观识别判断选择K值。

第二步:对于K值,其越小越好,通常建议小于1;确定好K值后,即可输入K值,得出岭回归模型估计,查看分析结果。

岭回归分析案例

(1)背景

现测得胎儿身高、头围、体重和胎儿受精周龄数据,希望建立胎儿身高、头围、体重去和胎儿受精周龄间的回归模型。根据医学常识情况(同时结合普通线性最小二乘法OLS回归测量),发现三个自变量之间有着很强的共线性,VIF值高于200;可知胎儿身高、体重之间肯定有着很强的正相关关系,因而使用岭回归模型。

(2)分析步骤

第一步:岭回归分析前需要结合岭迹图确认K值。首先拖拽身长、头围、体重到X分析框,胎儿受精周龄到Y分析框,不输入K值,SPSSAU会默认生成岭迹图,同时给出智能分析建议。

02947b270fc3faa8c6905cd422e0c764.png
操作路径:进阶方法>岭回归分析

198382f90809514b844a3e03b3e65ff8.png
岭迹图

0ddcb2c4566ca1a2871ac807e3272185.png
SPSSAU智能分析建议

第二步:对于K值,其越小越好,通常建议小于1;本案例中K值取0.01,返回分析界面,输入K值,得出岭回归模型估计。

9cccafd30741a61956b69cfb988e5ff3.png

(3)输出结果

bc2c79c0cf941043a68323abb1cc13f3.png
表1:模型汇总表

e55d57ca9f559bba5fbefbaa3ed4308d.png
表2:ANOVA分析表

26bb86859fc9e1900d90bfb9c127bd78.png
表3:Ridge回归分析结果表

表1用于整体分析模型拟合情况,可以看出,模型R平方值为0.959,意味着身长(cm), 头围(cm), 体重(g)可以解释胎儿受精周龄的0.959变化原因,模型拟合程度好。

表2为岭回归ANOVA检验,用于判定模型是否有意义,本例中显示P值<0.05,说明模型有意义。

表3为岭回归分析结果,根据分析结果可知,模型公式为:胎儿受精周龄=9.994 + 0.430*身长(cm)-0.284*头围(cm) + 0.007*体重(g)。身长、体重通过显著性检验(P<0.05)说明对胎儿受精周龄有影响关系。

总结分析可知:身长(cm), 体重(g)会对胎儿受精周龄产生显著的正向影响关系。但是头围(cm)并不会对胎儿受精周龄产生影响关系。

其他说明

岭回归分析需要特别注意两点,分别是共线性判断和分析步骤。

  • 是否呈现出共线性,一定需要有理有据,比如VIF值过高,也或者自变量之间的相关关系过高(比如大于0.6);如果数据并没有共线性,依旧建议使用普通线性最小二乘法回归。
  • 岭回归建模共分为两步,分别是寻找最佳K值和建模。岭迹图中,如果过了某点时趋于稳定,则该点对应的K值为最佳K值,以及K值是越小越好。

更多干货内容登录SPSSAU官网查看

SPSSAU:一图读懂:什么是偏相关?

SPSSAU:什么是虚拟变量?怎么设置才正确?

SPSSAU:多重共线性问题,如何解决?

这篇关于评价最小二乘法回归模型的优劣用什么方法?_解决多重共线性之岭回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377697

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)