【无人机编队】基于一阶一致性实现无领导多无人机协同编队控制附matlab仿真

本文主要是介绍【无人机编队】基于一阶一致性实现无领导多无人机协同编队控制附matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于一阶一致性的无领导多无人机协同编队控制是一种方法,通过使无人机之间的状态保持一致来实现编队控制,而无需明确的领导者。下面是一个基本的步骤框架:

  1. 系统建模:建立每个无人机的动力学模型,并考虑位置和速度等状态变量。

  2. 通信网络构建:构建无人机之间的通信网络,使它们可以相互传递状态信息。

  3. 状态更新规则:定义每个无人机如何根据收到的邻居无人机的状态信息来更新自身状态。这可以通过简单的一阶一致性算法来实现,其中每个无人机根据相邻无人机的状态调整自己的速度或位置。

  4. 控制策略设计:设计适当的控制策略,以根据更新的状态调整无人机的姿态、速度或位置。这可能需要考虑环境约束、避障和任务要求等因素。

  5. 仿真和实验:使用仿真工具或实际无人机平台进行验证和调整。通过调整参数和控制策略,优化编队的性能和稳定性。

需要注意的,实现无多无人机协同编队控制是一个复杂的任务,需要考虑许多因素,如通信延迟、不确定性、碰撞避免和编队形状等。此外,适当的传感器和导航系统可能也需要集成到系统中。

以上提供的步骤框架仅是一个基本指导,并且可以根据具体要求进行调整和改进。在实际应用中,深入研究算法细节、建模精确性和控制策略对编队效果的影响是非常重要的。

⛄ 部分代码

clcclearclose allt0=0;tf=100; step_qw=0.01;p1=20;M=1.75;N=2.5;    q0=[1; 2;1; 3;2; 4; 3; 1];save('q0.mat','q0');% load('q0.mat','q0'); [t,q]=ode45('Whole_Twodimension_total_state',t0:step_qw:tf,q0);figure(1);hold onxlabel('x position','FontName','Times New Roman','FontSize',14);ylabel('y position','FontName','Times New Roman','FontSize',14);plot(q(:,1),q(:,2),'g');%legend('agent 1',4);hold onplot(q(:,3),q(:,4),'r');hold onplot(q(:,5),q(:,6),'b');hold onplot(q(:,7),q(:,8),'k');hold onlegend('agent 1','agent 2','agent 3','agent 4');plot(q(1,1),q(1,2),'ro');hold onplot(q(1,3),q(1,4),'bo');hold onplot(q(1,5),q(1,6),'bo');hold onplot(q(1,7),q(1,8),'bo');hold onplot(q(end,1),q(end,2),'rp');hold onbox onfigure(2)hold onxlabel('t/s','FontName','Times New Roman','FontSize',14);ylabel('Xi','interpreter','latex','fontsize',14);hold onplot(t,q(:,1),'r-');hold onplot(t,q(:,3),'b-');hold on;plot(t,q(:,5),'k-');hold on;plot(t,q(:,7),'m-');hold onlegend('agent 1','agent 2','agent 3','agent 4');box onfigure(3)hold onxlabel('t/s','FontName','Times New Roman','FontSize',14);ylabel('Yi','interpreter','latex','fontsize',14);hold onplot(t,q(:,2),'r');hold onplot(t,q(:,4),'b');hold on;plot(t,q(:,6),'k');hold on;plot(t,q(:,8),'m');hold onlegend('agent 1','agent 2','agent 3','agent 4');box onfigure(4)hold onxlabel('t/s','FontName','Times New Roman','FontSize',14);ylabel('X-$\bar{X}_i$','interpreter','latex','fontsize',14);hold onplot(t,q(:,1)-M,'r');hold onplot(t,q(:,3)-M,'b');hold on;plot(t,q(:,5)-M,'k');hold on;plot(t,q(:,7)-M,'m');hold onlegend('agent 1','agent 2','agent 3','agent 4');box onfigure(5)hold onxlabel('t/s','FontName','Times New Roman','FontSize',14);ylabel('Y-$\bar{Y}_i$','interpreter','latex','fontsize',14);hold onplot(t,q(:,2)-N,'r');hold onplot(t,q(:,4)-N,'b');hold on;plot(t,q(:,6)-N,'k');hold on;plot(t,q(:,8)-N,'m');hold onbox onlegend('agent 1','agent 2','agent 3','agent 4'); grid off

⛄ 运行结果

⛄ 参考文献

[1] 马培蓓,雷明,纪军.基于一致性的多无人机协同编队设计[J].战术导弹技术, 2017(2):5.DOI:10.16358/j.issn.1009-1300.2017.02.15.

[2] 熊涛,曹科才,柴运,等.基于输入约束一致性算法的多无人机编队控制[J].计算机工程与应用, 2018, 54(12):7.DOI:10.3778/j.issn.1002-8331.1704-0458.

[3] 吴宇,梁天骄.基于改进一致性算法的无人机编队控制[J].航空学报, 2020.DOI:10.7527/S1000-6893.2020.23848.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于【无人机编队】基于一阶一致性实现无领导多无人机协同编队控制附matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375091

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常