算法实验:矩阵连乘(动态规划)

2023-11-09 06:58

本文主要是介绍算法实验:矩阵连乘(动态规划),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description
给你2个矩阵A、B,我们使用标准的矩阵相乘定义C=AB如下: A数组中栏(column)的数目一定要等于B数组中列(row)的数目才可以做此2数组的相乘。若我们以rows(A),columns(A)分 别代表A数组中列及栏的数目,要计算C数组共需要的乘法的数目为:rows(A)columns(B)columns(A)。例如:A数组是一个 10x20的矩阵,B数组是个20x15的矩阵,那么要算出C数组需要做101520,也就是3000次乘法。 要计算超过2个以上的矩阵相乘就得决定要用怎样的顺序来做。例如:X、Y、Z都是矩阵,要计算XYZ的话可以有2种选择:(XY)Z 或者 X(YZ)。假设X是5x10的数组,Y是10x20的数组,Z是20x35的数组,那个不同的运算顺序所需的乘法数会有不同: (XY)Z • 52010 = 1000次乘法完成(XY),并得到一5x20的数组。 • 53520 = 3500次乘法得到最后的结果。 • 总共需要的乘法的次数:1000+3500=4500。 X(YZ) • 103520 = 7000次乘法完成(YZ),并得到一10x35的数组。 • 53510 = 1750次乘法得到最后的结果。 • 总共需要的乘法的次数:7000+1750=8750。 很明显的,我们可以知道计算(XY)Z会使用较少次的乘法。 这个问题是:给你一些矩阵,你要写一个程序来决定该如何相乘的顺序,使得用到乘法的次数会最少。

Input
含有多组测试数据,每组测试数据的第一列,含有1个整数N(N <= 10)代表有多少个数组要相乘。接下来有N对整数,代表一数组的列数及栏数。这N个数组的顺序与要你相乘的数组顺序是一样的。N=0代表输入结束。请参考Sample Input。

Output
每组测试数据输出一列,内容为矩阵相乘的顺序(以刮号来表示)使得所用的乘法次数最小。如果有不只一组答案,输出任一组均可。请参考Sample Output。

Sample Input
3
1 5
5 20
20 1
3
5 10
10 20
20 35
6
30 35
35 15
15 5
5 10
10 20
20 25
0
Sample Output
Case 1: (A1 x (A2 x A3))
Case 2: ((A1 x A2) x A3)
Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))

动态转移方程

在这里插入图片描述

利用备忘录方法记录下每次子问题计算出来的答案,最后如果再需要只要查一下子问题的答案即可
mm[i][j]用来表示[i, j]区间内所需的最小乘法次数, xx[i][j]表示对应于mm[i][j]的断开位置。
最后利用xx[i][j]递归输出答案即可

代码:

#include <cstdio>
#include <cstring>
const int M = 15;
int rows[M], columns[M];
int mm[M][M], xx[M][M];
int tot;
int n;
int find_(int l, int r) {if (l == r) return mm[l][r] = 0;if (mm[l][r] != -1) return mm[l][r];int ans = find_(l + 1, r) + rows[l] * columns[r] * columns[r];int x = l;for (int i = l + 1; i < r; ++i) {if (find_(l, i) + find_(i + 1, r) + rows[l] * columns[r] * columns[i] < ans) {x = i;ans = find_(l, i) + find_(i + 1, r) + rows[l] * columns[r] * columns[i];}}xx[l][r] = x;return mm[l][r] = ans;
}
void find__(int l, int r) {if (r - l == 0) {printf("A%d", l + 1);return;}int temp = xx[l][r];if (temp - l == 0)find__(l, temp);else {printf("(");find__(l, temp);printf(")");}printf(" x ");if (r - (temp + 1) == 0) {find__(temp + 1, r);}else {printf("(");find__(temp + 1, r);printf(")");}
}
int main() {int cnt = 1;while (scanf("%d", &n) != EOF) {tot = 0;if (n == 0) break;memset(mm, -1, sizeof(mm));memset(xx, -1, sizeof(xx));for (int i = 0; i < n; ++i) scanf("%d%d", &rows[i], &columns[i]);find_(0, n - 1);printf("Case %d: ", cnt++);printf("(");find__(0, n - 1);printf(")\n");}return 0;
}

这篇关于算法实验:矩阵连乘(动态规划)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374584

相关文章

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作