有限域的Fast Multiplication和Modular Reduction算法实现

2023-11-09 02:01

本文主要是介绍有限域的Fast Multiplication和Modular Reduction算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

关于有限域的基础知识,可参考:

  • RISC Zero团队2022年11月视频 Intro to Finite Fields: RISC Zero Study Club
    在这里插入图片描述

有限域几乎是密码学中所有数学的基础。
ZKP证明系统中的所有运算都是基于有限域的:

  • 使用布尔运算的数字电路:如AND、OR、NOT。
  • 使用有限域运算的算术电路:如addition、multiplication、negation。

但是,真实的计算机没有有限域电路装置,只有:

  • ADD rax, rbx
  • MUL rax
  • SHR rax, CL
  • 等等

因此,需基于以上运算来构建有限域运算。
有限域运算的速度很关键,原因在于:

  • 影响ZKP可用性的最大障碍在于证明开销。
  • 几乎所有的证明时间都用于有限域运算了。为提升ZKP证明速度:
    • 减少有限域运算次数(如,更高效的NTT或MSM算法)
    • 让有限域运算更高效(如,使用优化的有限域表示)

本文主要关注内容有:

  • BigInts
  • BigInts经典加法运算
  • BigInts经典乘法运算
  • Modular reduction(Barrett算法):当无法更改数字表示时,最有用。
  • Montgomery form
  • Multiplication and reduction(Montgomery算法):最常用算法。
  • 其它multiplication算法

并对大整数乘法运算的经典算法、Barrett算法、Montgomery算法进行了对比:
在这里插入图片描述

2. 大整数及其加法和乘法运算

大整数,又名BigInt或Multiprecision Integers。
真实计算机的运算符是基于word的:

  • 几乎所有的现代计算机都使用64-bit words
  • 但32-bit words并未完全过时。比如在IoT世界。

对于更大(如256位)的域,会将其切分为words来表示:

  • 如,通常以4个64-bit word来表示256-bit数字。
  • 如十进制的8位数字,可 以4个2-digit word来表示。

如以100进制的digit来表示大整数27311837,对应为:
( 27 31 18 37 ) 100 (27\ 31\ 18\ 37)_{100} (27 31 18 37)100

2.1 大整数经典加法运算

对应的大整数加法运算,如 ( 27 31 18 37 ) 100 + ( 88 68 97 89 ) 100 (27\ 31\ 18\ 37)_{100} + (88\ 68\ 97\ 89)_{100} (27 31 18 37)100+(88 68 97 89)100,计算规则为:
在这里插入图片描述
具体见Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.3算法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 大整数经典乘法运算

( 54 12 ) 100 ∗ ( 36 29 ) 100 (54\ 12)_{100}*(36\ 29)_{100} (54 12)100(36 29)100大整数乘法运算为例,具体见Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.8算法:
在这里插入图片描述
对应各个step的计算数据为:
在这里插入图片描述

3. Modular Reduction

需注意,以上加法和乘法运算结果均为更大的值,需将这些大的结果值reduce为相应的canonical表示,如:
在这里插入图片描述
常见的Modular Reduction算法有:

  • 1)Barret reduction算法:当无法更改数字表示时,最有用。
  • 2)Montgomery multiplication and reduction算法:最常用算法。

相关博客有:

  • 基础算法优化——Fast Modular Multiplication
  • GPU/CPU友好的模乘算法:Multi-Precision Fast Modular Multiplication
  • Montgomery reduction——多精度模乘法运算算法

3.1 Barret reduction算法

做reduction最明显的方式是做除法,但除法运算昂贵,且可能不是constant time的。以single-word除法运算 b = 1 , R = 2 k b=1,R=2^k b=1R=2k 为例:

func reduce(a uint) uint {q:= a / n  // Division implicitly returns the floor of the result.return a - q * n
}

非constant time会存在timing attack攻击问题。
Barrett reduction为将 1 / n 1/n 1/n近似为 m / 2 k m/2^k m/2k,因为 m / 2 k m/2^k m/2k中的除法实际是右移运算,要便宜得多。【可近似计算 m m m值为 m = ⌊ 2 k / n ⌋ m=\left \lfloor 2^k/n\right \rfloor m=2k/n

func reduce(a uint) uint {q := (a * m) >> k // ">> k" denotes bitshift by k.return a - q * n
}

不过这样reduce之后的结果在 [ 0 , 2 n ) [0,2n) [0,2n),而不是 [ 0 , n ) [0,n) [0,n),因此需进一步reduce:

func reduce(a uint) uint {q := (a * m) >> ka -= q * nif a >= n {a -= n}return a
}

Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.17算法,将其扩展为了multi-word Barrett Reduction算法,且在以上最后一步reduce之前的结果不再是 [ 0 , 2 n ) [0,2n) [0,2n)而是可能更大的范围值,因此在Algorithm 10.17算法中第4步采用的是while
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 Montgomery multiplication and reduction算法

Montgomery Form为另一种有限域表示,其支持快速combined multiplication and reduction算法。

之前将有限域元素表示为:
x ∈ [ 0 , N − 1 ] x\in [0,N-1] x[0,N1]

而Montgomery Form表示定义为:
[ x ] = ( x R ) m o d N [x]=(xR)\mod N [x]=(xR)modN

Montgomery Reduction算法计算的是:
R E D C ( u ) = ( u R − 1 ) m o d N REDC(u)=(uR^{-1})\mod N REDC(u)=(uR1)modN
而不是之前Barrett Reduction计算的 u m o d N u\mod N umodN

R E D C REDC REDC是一个非常多功能的公式:

  • 1)将经典转换为Montgomery: [ x ] = R E D C ( ( x R 2 ) m o d N ) [x]=REDC((xR^2)\mod N) [x]=REDC((xR2)modN)
  • 2)将Montgomery转换为经典: R E D C ( [ x ] ) = x REDC([x])=x REDC([x])=x
  • 3)对Montgomery Form表示的乘法运算: ( ( x R m o d p ) ∗ ( y R m o d p ) ∗ R − 1 m o d p ) = ( x y R ) m o d p ((xR\mod p)*(yR\mod p)*R^{-1}\mod p)=(xyR)\mod p ((xRmodp)(yRmodp)R1modp)=(xyR)modp,对应在Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 11.3算法中做了相应实现:
    在这里插入图片描述

其中 Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.22算法中所实现的Montgomery reduction算法为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 其它multiplication算法

Multiplication算法的演变过程为:

  • multiplication算法曾被认为其runtime约为 O ( n 2 ) O(n^2) O(n2)
  • Karatsuba发明了一种divide-and-conquer算法,其runtime为 O ( n 1.58 ) O(n^{1.58}) O(n1.58)
  • Toom-Cook乘法算法与Karatsuba算法类似,性能略好一点。
  • Schönhage–Strassen 发明了一种NTT算法,其runtime为 O ( n ⋅ log ⁡ n ⋅ log ⁡ log ⁡ n ) O(n\cdot \log n\cdot \log\log n) O(nlognloglogn)
  • 当对大整数做乘法运算时,其速度要更慢,如4096位RSA密钥。

参考资料

[1] RISC Zero团队2023年2月视频 Finite Field Implementations: Barrett & Montgomery【slide见Finite Field Implementations】
[2] 维基百科Barrett reduction

RISC Zero系列博客

  • RISC0:Towards a Unified Compilation Framework for Zero Knowledge
  • Risc Zero ZKVM:zk-STARKs + RISC-V
  • 2023年 ZK Hack以及ZK Summit 亮点记
  • RISC Zero zkVM 白皮书
  • Risc0:使用Continunations来证明任意EVM交易
  • Zeth:首个Type 0 zkEVM
  • RISC Zero项目简介
  • RISC Zero zkVM性能指标
  • Continuations:扩展RISC Zero zkVM支持(无限)大计算
  • A summary on the FRI low degree test前2页导读
  • Reed-Solomon Codes及其与RISC Zero zkVM的关系
  • RISC Zero zkVM架构
  • RISC-V与RISC Zero zkVM的关系

这篇关于有限域的Fast Multiplication和Modular Reduction算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373550

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import