有限域的Fast Multiplication和Modular Reduction算法实现

2023-11-09 02:01

本文主要是介绍有限域的Fast Multiplication和Modular Reduction算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

关于有限域的基础知识,可参考:

  • RISC Zero团队2022年11月视频 Intro to Finite Fields: RISC Zero Study Club
    在这里插入图片描述

有限域几乎是密码学中所有数学的基础。
ZKP证明系统中的所有运算都是基于有限域的:

  • 使用布尔运算的数字电路:如AND、OR、NOT。
  • 使用有限域运算的算术电路:如addition、multiplication、negation。

但是,真实的计算机没有有限域电路装置,只有:

  • ADD rax, rbx
  • MUL rax
  • SHR rax, CL
  • 等等

因此,需基于以上运算来构建有限域运算。
有限域运算的速度很关键,原因在于:

  • 影响ZKP可用性的最大障碍在于证明开销。
  • 几乎所有的证明时间都用于有限域运算了。为提升ZKP证明速度:
    • 减少有限域运算次数(如,更高效的NTT或MSM算法)
    • 让有限域运算更高效(如,使用优化的有限域表示)

本文主要关注内容有:

  • BigInts
  • BigInts经典加法运算
  • BigInts经典乘法运算
  • Modular reduction(Barrett算法):当无法更改数字表示时,最有用。
  • Montgomery form
  • Multiplication and reduction(Montgomery算法):最常用算法。
  • 其它multiplication算法

并对大整数乘法运算的经典算法、Barrett算法、Montgomery算法进行了对比:
在这里插入图片描述

2. 大整数及其加法和乘法运算

大整数,又名BigInt或Multiprecision Integers。
真实计算机的运算符是基于word的:

  • 几乎所有的现代计算机都使用64-bit words
  • 但32-bit words并未完全过时。比如在IoT世界。

对于更大(如256位)的域,会将其切分为words来表示:

  • 如,通常以4个64-bit word来表示256-bit数字。
  • 如十进制的8位数字,可 以4个2-digit word来表示。

如以100进制的digit来表示大整数27311837,对应为:
( 27 31 18 37 ) 100 (27\ 31\ 18\ 37)_{100} (27 31 18 37)100

2.1 大整数经典加法运算

对应的大整数加法运算,如 ( 27 31 18 37 ) 100 + ( 88 68 97 89 ) 100 (27\ 31\ 18\ 37)_{100} + (88\ 68\ 97\ 89)_{100} (27 31 18 37)100+(88 68 97 89)100,计算规则为:
在这里插入图片描述
具体见Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.3算法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 大整数经典乘法运算

( 54 12 ) 100 ∗ ( 36 29 ) 100 (54\ 12)_{100}*(36\ 29)_{100} (54 12)100(36 29)100大整数乘法运算为例,具体见Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.8算法:
在这里插入图片描述
对应各个step的计算数据为:
在这里插入图片描述

3. Modular Reduction

需注意,以上加法和乘法运算结果均为更大的值,需将这些大的结果值reduce为相应的canonical表示,如:
在这里插入图片描述
常见的Modular Reduction算法有:

  • 1)Barret reduction算法:当无法更改数字表示时,最有用。
  • 2)Montgomery multiplication and reduction算法:最常用算法。

相关博客有:

  • 基础算法优化——Fast Modular Multiplication
  • GPU/CPU友好的模乘算法:Multi-Precision Fast Modular Multiplication
  • Montgomery reduction——多精度模乘法运算算法

3.1 Barret reduction算法

做reduction最明显的方式是做除法,但除法运算昂贵,且可能不是constant time的。以single-word除法运算 b = 1 , R = 2 k b=1,R=2^k b=1R=2k 为例:

func reduce(a uint) uint {q:= a / n  // Division implicitly returns the floor of the result.return a - q * n
}

非constant time会存在timing attack攻击问题。
Barrett reduction为将 1 / n 1/n 1/n近似为 m / 2 k m/2^k m/2k,因为 m / 2 k m/2^k m/2k中的除法实际是右移运算,要便宜得多。【可近似计算 m m m值为 m = ⌊ 2 k / n ⌋ m=\left \lfloor 2^k/n\right \rfloor m=2k/n

func reduce(a uint) uint {q := (a * m) >> k // ">> k" denotes bitshift by k.return a - q * n
}

不过这样reduce之后的结果在 [ 0 , 2 n ) [0,2n) [0,2n),而不是 [ 0 , n ) [0,n) [0,n),因此需进一步reduce:

func reduce(a uint) uint {q := (a * m) >> ka -= q * nif a >= n {a -= n}return a
}

Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.17算法,将其扩展为了multi-word Barrett Reduction算法,且在以上最后一步reduce之前的结果不再是 [ 0 , 2 n ) [0,2n) [0,2n)而是可能更大的范围值,因此在Algorithm 10.17算法中第4步采用的是while
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 Montgomery multiplication and reduction算法

Montgomery Form为另一种有限域表示,其支持快速combined multiplication and reduction算法。

之前将有限域元素表示为:
x ∈ [ 0 , N − 1 ] x\in [0,N-1] x[0,N1]

而Montgomery Form表示定义为:
[ x ] = ( x R ) m o d N [x]=(xR)\mod N [x]=(xR)modN

Montgomery Reduction算法计算的是:
R E D C ( u ) = ( u R − 1 ) m o d N REDC(u)=(uR^{-1})\mod N REDC(u)=(uR1)modN
而不是之前Barrett Reduction计算的 u m o d N u\mod N umodN

R E D C REDC REDC是一个非常多功能的公式:

  • 1)将经典转换为Montgomery: [ x ] = R E D C ( ( x R 2 ) m o d N ) [x]=REDC((xR^2)\mod N) [x]=REDC((xR2)modN)
  • 2)将Montgomery转换为经典: R E D C ( [ x ] ) = x REDC([x])=x REDC([x])=x
  • 3)对Montgomery Form表示的乘法运算: ( ( x R m o d p ) ∗ ( y R m o d p ) ∗ R − 1 m o d p ) = ( x y R ) m o d p ((xR\mod p)*(yR\mod p)*R^{-1}\mod p)=(xyR)\mod p ((xRmodp)(yRmodp)R1modp)=(xyR)modp,对应在Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 11.3算法中做了相应实现:
    在这里插入图片描述

其中 Handbook of Elliptic and Hyperelliptic Curve Cryptography书本中的Algorithm 10.22算法中所实现的Montgomery reduction算法为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 其它multiplication算法

Multiplication算法的演变过程为:

  • multiplication算法曾被认为其runtime约为 O ( n 2 ) O(n^2) O(n2)
  • Karatsuba发明了一种divide-and-conquer算法,其runtime为 O ( n 1.58 ) O(n^{1.58}) O(n1.58)
  • Toom-Cook乘法算法与Karatsuba算法类似,性能略好一点。
  • Schönhage–Strassen 发明了一种NTT算法,其runtime为 O ( n ⋅ log ⁡ n ⋅ log ⁡ log ⁡ n ) O(n\cdot \log n\cdot \log\log n) O(nlognloglogn)
  • 当对大整数做乘法运算时,其速度要更慢,如4096位RSA密钥。

参考资料

[1] RISC Zero团队2023年2月视频 Finite Field Implementations: Barrett & Montgomery【slide见Finite Field Implementations】
[2] 维基百科Barrett reduction

RISC Zero系列博客

  • RISC0:Towards a Unified Compilation Framework for Zero Knowledge
  • Risc Zero ZKVM:zk-STARKs + RISC-V
  • 2023年 ZK Hack以及ZK Summit 亮点记
  • RISC Zero zkVM 白皮书
  • Risc0:使用Continunations来证明任意EVM交易
  • Zeth:首个Type 0 zkEVM
  • RISC Zero项目简介
  • RISC Zero zkVM性能指标
  • Continuations:扩展RISC Zero zkVM支持(无限)大计算
  • A summary on the FRI low degree test前2页导读
  • Reed-Solomon Codes及其与RISC Zero zkVM的关系
  • RISC Zero zkVM架构
  • RISC-V与RISC Zero zkVM的关系

这篇关于有限域的Fast Multiplication和Modular Reduction算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373550

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如