Knowledge Editing for Large Language Models: A Survey

2023-11-09 00:15

本文主要是介绍Knowledge Editing for Large Language Models: A Survey,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是LLM系列文章,针对《Knowledge Editing for Large Language Models: A Survey》的翻译。

大型语言模型的知识编辑研究综述

  • 摘要
  • 1 引言
  • 2 背景
  • 3 问题描述
  • 4 评估指标
  • 5 方法
  • 6 数据集
  • 7 应用
  • 8 讨论
  • 9 结论

摘要

大型语言模型(LLM)最近改变了学术界和工业界的格局,因为它们具有基于丰富的知识和推理能力理解、分析和生成文本的非凡能力。然而,LLM的一个主要缺点是,由于其前所未有的参数数量,其预训练的计算成本巨大。当经常需要将新知识引入预先训练的模型中时,这种劣势会加剧。因此,必须开发有效和高效的技术来更新预先训练的LLM。传统方法通过直接微调将新知识编码在预先训练的LLM中。然而,天真地重新训练LLM可能是计算密集型的,并且有可能退化与模型更新无关的有价值的预先训练的知识。最近,基于知识的模型编辑(KME)引起了越来越多的关注,其目的是精确地修改LLM以包含特定知识,而不会对其他无关知识产生负面影响。在本次综述中,我们旨在全面深入地概述KME领域的最新进展。我们首先介绍了KME的一般公式,以包含不同的KME策略。之后,我们基于如何将新知识引入预先训练的LLM,提供了KME技术的创新分类,并研究了现有的KME策略,同时分析了每个类别方法的关键见解、优势和局限性。此外,还相应地介绍了KME的代表性度量、数据集和应用。最后,我们对KME的实用性和剩余挑战进行了深入分析,并为该领域的进一步发展提出了有前景的研究方向。

1 引言

2 背景

3 问题描述

4 评估指标

5 方法

6 数据集

7 应用

8 讨论

9 结论

在这项调查中,我们对基于知识的模型编辑(KME)技术进行了全面深入的回顾,该技术用于在预先训练的LLM中精确有效地更新新知识。我们首先将KME问题公式化为一个约束优化目标,同时确保编辑的准确性和保留性,这通常包括不同的KME策略。然后,我们对KME的评估指标进行了概述,揭示了编辑模型的理想属性。随后,我们提出了一个结构化的分类框架来系统地对现有的KME技术进行分类。在每一类中,我们概述了核心挑战,阐述了具有代表性的方法,并讨论了它们的优势和劣势。此外,我们总结了广泛用于评估KME技术的数据集,强调某些技术需要特定的数据集结构来进行训练或评估。为了激励研究人员设计更实用的实现,我们还重点介绍了KME技术在现实世界中的应用。最后,我们确定了未来研究的几个潜在挑战,并提供了有助于该领域进一步发展的有见地的方向。

这篇关于Knowledge Editing for Large Language Models: A Survey的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373215

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

高精度打表-Factoring Large Numbers

求斐波那契数,不打表的话会超时,打表的话普通的高精度开不出来那么大的数组,不如一个int存8位,特殊处理一下,具体看代码 #include<stdio.h>#include<string.h>#define MAX_SIZE 5005#define LEN 150#define to 100000000/*一个int存8位*/int num[MAX_SIZE][LEN];void

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 密集检索需要学习具有区分性的文本嵌入,以表示查询和文档之间的语义关系。考虑到大语言模

ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法

Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF

阅读笔记--Guiding Attention in End-to-End Driving Models

作者:Diego Porres1, Yi Xiao1, Gabriel Villalonga1, Alexandre Levy1, Antonio M. L ́ opez1,2 出版时间:arXiv:2405.00242v1 [cs.CV] 30 Apr 2024 这篇论文研究了如何引导基于视觉的端到端自动驾驶模型的注意力,以提高它们的驾驶质量和获得更直观的激活图。 摘 要   介绍

阅读笔记(四)NoSQL的选择指引《NoSQL database systems: a survey and decision guidance》

一. 前言   《NoSQL database systems: a survey and decision guidance》是一篇很好的综述类论文,详细的论述了NoSQL的特点和各种不同NoSQL数据库的选择依据。   传统的关系型数据库(relational database management systems ,RDBMSs)可以在保证一致性、可靠性、稳定性的前提下提供强有力的数据存储