基于BERT和双向LSTM的微博评论倾向性分析研究-笔记

2023-11-08 21:20

本文主要是介绍基于BERT和双向LSTM的微博评论倾向性分析研究-笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14天阅读挑战赛
努力是为了不平庸~

基于BERT和双向LSTM的微博评论倾向性分析研究-笔记

一、模型介绍

针对传统语言模型在词向量表示中无法解决词语 多义性的问题,提出采用BERT模型来提取微博评论文本的语义特征表示,然后将获取的词语语义特征输入到双向LSTM模型中进行倾向性分类。
选取新浪微博评论数据进行了对比实验。实验结果表明,提出的基于BERT和双向LSTM的微博评论倾向性分类模型的F1值达到91.45%,优于其他主流的倾向性分析模型,证明了方法的有效性。
[局限] 双向 LSTM 模型训练的计算复杂度较高,BERT模型只能依赖于谷歌发布的预训练模型。
文本语义表示方法从最初的 One-Hot 表示法发展到当 前主流的 Word2Vec、Glove 等基于神经网络的方法,虽然在一定程度上解决了词语上下文关系的问题,但还没有解 决词语在不同语境下具有不同含义这个多义词问题。本文提出利用BERT作为语言特征提取与表示方法,既能获取 微博评论文本的丰富的语法、语义特征,又能解决传统基 于神经网络结构的语言特征表示方法忽略词语多义性的问题。
在这里插入图片描述
BERT在预训练目标函数时采用遮蔽语言模型(Masked Language Model,MLM),随机遮蔽一些词语,再在预训练过程中对其进行预测,这样可以学习到能够融合两个不同方向文本的表征。对于BERT模型的输入,每一个词语的表示都有词语向量(Token E吗beddings)、段向量(Segment Embeddings)和位置向量(Positional Embeddings)相加产生。
在这里插入图片描述
首先对数据进行预处理,完成数据集的预处理。 接着将训练集和验证集数据使用 BERT 模型进行预训练, 预训练过程中会在输入词序列中随机遮蔽 15% 的词,然 后再对被遮蔽的词进行预测,而被遮蔽的词 80% 的时间 用 [MASK] 替换,10% 的时间用随机词替换,10% 的时 间让选择的词不变,这样更能偏向实际观察到的词。除此 之外,预训练时还会进行下一句预测任务。在完成预训练 任务之后,便可以获取 BERT 模型对输入句子的表示,即 获取 BERT 模型的最后一层作为双向 LSTM 模型的特征输 入,并在双向 LSTM 后接上一个全连接层,并对全连接层 采用 Softmax 函数实现分类。在建模完成后,利用测试集 数据进行文本倾向性分析预测,最后采用 F1 值评价模型的性能。

二、实验介绍

作者将BERT-BLSTM模型与
1.baseline:利用BERT模型在语料库上预训练得到文本特征后,通过一个全连接层直接输入到 Softmax 分类器中;
2.Word2Vec-BLSTM: 将输入句子采用 Word2Vec 训练出词向量表示,并将其作为特征输入到 BLSTM 中进行分类;
3.EC-BLSTM: 利用注意力机制改进输入词向量来增强倾向性信息的学习,再输入到 BLSTM中进行语义信息的学习,最后实现分类;
4.ELMo-BLSTM: 将输入句子采用ELMo训练出词语特征向量后,将其输入到BLSTM 中进行分类;
5.GPT-BLSTM: 采用 OpenAI GPT 对输入句子进 行训练得到新的表示后,输入到 BLSTM 中进行分类;
6.BERT-SVM: 利用BERT预训练得到文本特征表示 之后输入到 SVM 中进行分类;7.BERT-RNN: 利用BERT预训练得到文本特征表示 之后输入到RNN 中完成特征训练及分类;
8.BERT-CNN: 利用BERT预训练得到文本特征表示 之后输入到CNN 中完成特征训练及分类。
这八类模型进行详细的对比,最终BERT-BLSTM模型获得最高的准确率、召回率和F1值。在这里插入图片描述

三、缺陷和局限

本文方法也存在一 定的问题,一个是双向 LSTM 模型训练的计算复杂度较高,另一个是BERT模型复现比较困难,只能依赖于谷歌团队发布的预训练模型。在今后的工作中将针对这些问题 进行改进,以期获得更高效的倾向性分析模型。

这篇关于基于BERT和双向LSTM的微博评论倾向性分析研究-笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372582

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用