二手车交易价格预测:建模调参

2023-11-08 19:18

本文主要是介绍二手车交易价格预测:建模调参,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建模与调参

内容介绍

  1. 线性回归模型:
  • 线性回归对于特征的要求;

  • 处理长尾分布;

  • 理解线性回归模型;

  1. 模型性能验证:
  • 评价函数与目标函数;

  • 交叉验证方法;

  • 留一验证方法;

  • 针对时间序列问题的验证;

  • 绘制学习率曲线;

  • 绘制验证曲线;

  1. 嵌入式特征选择:
  • Lasso回归;

  • Ridge回归;

  • 决策树;

  1. 模型对比:
  • 常用线性模型;

  • 常用非线性模型;

  1. 模型调参:
  • 贪心调参方法;

  • 网格调参方法;

  • 贝叶斯调参方法;

代码示例

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')

reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间

def reduce_mem_usage(df):""" iterate through all the columns of a dataframe and modify the data typeto reduce memory usage.        """start_mem = df.memory_usage().sum() print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))for col in df.columns:col_type = df[col].dtypeif col_type != object:c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64)  else:if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:df[col] = df[col].astype(np.float16)elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)else:df[col] = df[col].astype('category')end_mem = df.memory_usage().sum() print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))return df
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
Memory usage of dataframe is 60507328.00 MBMemory usage after optimization is: 15724107.00 MBDecreased by 74.0%
continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]

线性回归 & 五折交叉验证 & 模拟真实业务情况

sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
train = sample_feature[continuous_feature_names + ['price']]train_X = train[continuous_feature_names]
train_y = train['price']

简单建模

#导入线性回归模块
from sklearn.linear_model import LinearRegression
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)
'intercept:'+ str(model.intercept_)sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
[('v_6', 3509133.3556335964),('v_8', 739866.7711616001),('v_9', 173781.00967028155),('v_7', 41044.805433941016),('v_12', 30888.95721072973),('v_5', 27453.39738680756),('v_3', 23664.188371126955),('v_11', 15953.34701993885),('v_13', 13071.48191385408),('v_10', 7815.353298260309),('gearbox', 900.8564809596271),('fuelType', 426.18396873493714),('bodyType', 190.321639675651),('city', 44.487589413971016),('power', 27.430553534775616),('brand_price_median', 0.5498384842815008),('brand_price_std', 0.48508518798148187),('brand_amount', 0.14940527531407094),('used_time', 0.02179830302065399),('brand_price_max', 0.003136932045778858),('SaleID', 2.091664025644962e-05),('offerType', 3.907829523086548e-06),('train', -1.862645149230957e-09),('seller', -1.0849907994270325e-06),('brand_price_sum', -2.165152734579202e-05),('name', -0.0003995079681757267),('brand_price_average', -0.4597090013419026),('brand_price_min', -2.2063783078698163),('power_bin', -15.98197690477394),('v_14', -363.8704254957781),('kilometer', -388.47363328983346),('notRepairedDamage', -429.0950578648204),('v_0', -2092.782811714247),('v_4', -16184.453743213142),('v_2', -36879.522402007824),('v_1', -43460.2165225294)]
from matplotlib import pyplot as plt

绘制特征v_9的值与标签的散点图,图片发现模型的预测结果(蓝色点)与真实标签(黑色点)的分布差异较大,且部分预测值出现了小于0的情况,说明我们的模型存在一些问题

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()

在这里插入图片描述

import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y)
plt.subplot(1,2,2)
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])
train_y_ln = np.log(train_y + 1)
import seaborn as sns
print('The transformed price seems like normal distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y_ln)
plt.subplot(1,2,2)
sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])

在这里插入图片描述

model = model.fit(train_X, train_y_ln)print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
('seller', 9.308109838457312e-12),('brand_price_sum', -1.3473184925468486e-10),('name', -7.11403461065247e-08),('brand_price_median', -1.7608143661053008e-06),('brand_price_std', -2.7899058266986454e-06),('used_time', -5.6142735899344175e-06),('city', -0.0024992974087053223),('v_14', -0.012754139659375262),('kilometer', -0.013999175312751872),('v_0', -0.04553774829634237),('notRepairedDamage', -0.273686961116076),('v_7', -0.7455902679730504),('v_4', -0.9281349233755761),('v_2', -1.2781892166433606),('v_5', -1.5458846136756323),('v_10', -1.8059217242413748),('v_8', -42.611729973490604),('v_6', -241.30992120503035)]

再次进行可视化,发现预测结果与真实值较为接近,且未出现异常状况

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()

在这里插入图片描述

五折交叉验证

在使用训练集对参数进行训练的时候,经常会发现人们通常会将一整个训练集分为三个部分(比如mnist手写训练集)。一般分为:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。其中测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。而训练集和评估集则牵涉到下面的知识了。

因为在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)

from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer
def log_transfer(func):def wrapper(y, yhat):result = func(np.log(y), np.nan_to_num(np.log(yhat)))return resultreturn wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    1.1s finished

使用线性回归模型,对未处理标签的特征数据进行五折交叉验证

print('AVG:', np.mean(scores))

使用线性回归模型,对处理过标签的特征数据进行五折交叉验证

scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    1.1s finished
print('AVG:', np.mean(scores))
scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores
模拟真实业务情况

但在事实上,由于我们并不具有预知未来的能力,五折交叉验证在某些与时间相关的数据集上反而反映了不真实的情况。通过2018年的二手车价格预测2017年的二手车价格,这显然是不合理的,因此我们还可以采用时间顺序对数据集进行分隔。在本例中,我们选用靠前时间的4/5样本当作训练集,靠后时间的1/5当作验证集,最终结果与五折交叉验证差距不大

import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()train_X = train[continuous_feature_names]
train_y_ln = np.log(train['price'] + 1)
val_X = val[continuous_feature_names]
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))
绘制学习率曲线和验证曲线
from sklearn.model_selection import learning_curve, validation_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )):  plt.figure()  plt.title(title)  if ylim is not None:  plt.ylim(*ylim)  plt.xlabel('Training example')  plt.ylabel('score')  train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))  train_scores_mean = np.mean(train_scores, axis=1)  train_scores_std = np.std(train_scores, axis=1)  test_scores_mean = np.mean(test_scores, axis=1)  test_scores_std = np.std(test_scores, axis=1)  plt.grid()#区域  plt.fill_between(train_sizes, train_scores_mean - train_scores_std,  train_scores_mean + train_scores_std, alpha=0.1,  color="r")  plt.fill_between(train_sizes, test_scores_mean - test_scores_std,  test_scores_mean + test_scores_std, alpha=0.1,  color="g")  plt.plot(train_sizes, train_scores_mean, 'o-', color='r',  label="Training score")  plt.plot(train_sizes, test_scores_mean,'o-',color="g",  label="Cross-validation score")  plt.legend(loc="best")  return plt  
plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)  

在这里插入图片描述

多种模型对比
train = sample_feature[continuous_feature_names + ['price']].dropna()train_X = train[continuous_feature_names]
train_y = train['price']
train_y_ln = np.log(train_y + 1)
模型调参
objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair']num_leaves = [3,5,10,15,20,40, 55]
max_depth = [3,5,10,15,20,40, 55]
bagging_fraction = []
feature_fraction = []
drop_rate = []
贪心调参
best_obj = dict()
for obj in objective:model = LGBMRegressor(objective=obj)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_obj[obj] = scorebest_leaves = dict()
for leaves in num_leaves:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_leaves[leaves] = scorebest_depth = dict()
for depth in max_depth:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],max_depth=depth)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_depth[depth] = score
sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])

在这里插入图片描述

Grid Search 调参
from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth}
model = LGBMRegressor()
clf = GridSearchCV(model, parameters, cv=5)
clf = clf.fit(train_X, train_y)
clf.best_params_
model = LGBMRegressor(objective='regression',num_leaves=55,max_depth=15)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
贝叶斯调参
from bayes_opt import BayesianOptimization
def rf_cv(num_leaves, max_depth, subsample, min_child_samples):val = cross_val_score(LGBMRegressor(objective = 'regression_l1',num_leaves=int(num_leaves),max_depth=int(max_depth),subsample = subsample,min_child_samples = int(min_child_samples)),X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)).mean()return 1 - val
rf_bo = BayesianOptimization(rf_cv,{'num_leaves': (2, 100),'max_depth': (2, 100),'subsample': (0.1, 1),'min_child_samples' : (2, 100)}
)
rf_bo.maximize()
rf_bo.max['target']
plt.figure(figsize=(13,5))
sns.lineplot(x=['0_origin','1_log_transfer','2_L1_&_L2','3_change_model','4_parameter_turning'], y=[1.36 ,0.19, 0.19, 0.14, 0.13])

在这里插入图片描述

这篇关于二手车交易价格预测:建模调参的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371940

相关文章

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

OCC开发_变高箱梁全桥建模

概述     上一篇文章《OCC开发_箱梁梁体建模》中详细介绍了箱梁梁体建模的过程。但是,对于实际桥梁,截面可能存在高度、腹板厚度、顶底板厚度变化,全桥的结构中心线存在平曲线和竖曲线。针对实际情况,通过一个截面拉伸来实现全桥建模显然不可能。因此,针对变高箱梁,本文新的思路来实现全桥建模。 思路 上一篇文章通过一个截面拉伸生成几何体的方式行不通,我们可以通过不同面来形成棱柱的方式实现。具体步骤

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

2024年高教社杯数学建模国赛最后一步——结果检验-事关最终奖项

2024年国赛已经来到了最后一天,有必要去给大家讲解一下,我们不需要过多的去关注模型的结果,因为模型的结果的分值设定项最多不到20分。但是如果大家真的非常关注的话,那有必要给大家讲解一下论文结果相关的问题。很多的论文,上至国赛优秀论文下至不获奖的论文并不是所有的论文都可以进行完整的复现求解,大部分数模论文都为存在一个灰色地带。         白色地带即认为所有的代码均可运行、公开

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

Rhinoceros 8 for Mac/Win:重塑三维建模边界的革新之作

Rhinoceros 8(简称Rhino 8),作为一款由Robert McNeel & Assoc公司开发的顶尖三维建模软件,无论是对于Mac还是Windows用户而言,都是一款不可多得的高效工具。Rhino 8以其强大的功能、广泛的应用领域以及卓越的性能,在建筑设计、工业设计、产品设计、三维动画制作、科学研究及机械设计等多个领域展现出了非凡的实力。 强大的建模能力 Rhino 8支持多种建

2024 年高教社杯全国大学生数学建模竞赛题目——2024 年高教社杯全国大学生数学建模竞赛题目的求解

2024 年高教社杯全国大学生数学建模竞赛题目 (请先阅读“ 全国大学生数学建模竞赛论文格式规范 ”) 2024 年高教社杯全国大学生数学建模竞赛题目 随着城市化进程的加快、机动车的快速普及, 以及人们活动范围的不断扩大,城市道 路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问题也成为影响地方经 济发展和百姓幸福感的一个“痛点”,是相关部门的棘手难题之一。 考虑一个拥有知名景区

2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 参考论文 无水印

持续更新中,2024年数学建模比赛思路代码论文都会发布到专栏内,只需订阅一次!  完整论文+代码+数据结果链接在文末!  订阅后可查看参考论文文件 第一问 1.1 问题重述 这个问题围绕的是华北山区的某乡村,在有限的耕地条件下,如何制定最优的农作物种植策略。乡村有 34 块露天耕地和 20 个大棚,种植条件包括粮食作物、蔬菜、水稻和食用菌。除了要考虑地块的面积、种植季节等,还要确保

Matlab simulink建模与仿真 第十章(模型扩展功能库)

参考视频:simulink1.1simulink简介_哔哩哔哩_bilibili 一、模型扩展功能库中的模块概览         注:下面不会对Block Support Table模块进行介绍。 二、基于触发的和基于时间的线性化模块 1、Trigger-Based Linearization基于触发的线性化模块 (1)每次当模块受到触发时,都会调用linmod或者dlinmod函数