将yolo-fastest自训练模型转成rknn,并在rv1126下实现推理

2023-11-07 18:40

本文主要是介绍将yolo-fastest自训练模型转成rknn,并在rv1126下实现推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于如何用训练自己的yolo-fastest模型,上一篇博文已经说明,现记录先近期的实验。

环境:
系统:ubuntu1804
软件:rknn-toolkit 1.6.0(根据Rockchip_Quick_Start_RKNN_Toolkit_Vx.x.x_CN.pdf文档,部署好其他软件环境,opencv numpy tensorflow…等一系列依赖)
硬件:rv1126开发板(rp pro-rv1126 2+8)

一、模型转换
1、将准备好相应的文件
(1)yolo-fastest.cfg,该文件是自己训练时候修改过的配置文件
(2)yolo-fastest_best.weights, 自训练的权重文件
(3)ai_0006.jpg,需要推理的图片
(4)dataset.txt,该文件的内容是推理图片的路径,如下

./ai_0006.jpg

(5)trans-yolofastest.py,内容如下

from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
import re
import math
import random
from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()print('load model...')ret = rknn.load_darknet(model='./yolo-fastest.cfg', weight='./yolo-fastest_best.weights')if ret != 0:print('load err...')exit(ret)print('done')rknn.config(reorder_channel='0,1,2', mean_values=[[0,0,0]],std_values=[[255,255,255]],target_platform=['rv1126'])print('building...')ret = rknn.build(do_quantization=True, dataset='./dataset.txt')if ret != 0:print('build fail!')exit(ret)print('done')ret = rknn.export_rknn('./yolo-fastest.rknn')if ret != 0:print('export fail!')exit(ret)exit(0)

2、对模型进行转换
(1)确保已经在文章开头描述的软件环境中
(2)运行模型转换代码

yolo-fast-zyj$ python3 trans-yolofastest.py

运行结果如下图,并查看路径下是否已经生成rknn模型
在这里插入图片描述
二、模型推理
1、准备好推理代码文件run_yolo-fastest_rknn.py,需要修改几个关键的地方
(1)GRID0、GRID1根据yolo算法的grid cell来修改;就是输出单元大小,例如yolov3是13x13,26x26,52x52。
(2)LISTSIZE=NUL_CLS+5,就是识别种类加5,比如yolov4识别80种类,则LISTSIZE=80+5,我这里只识别两个种类,所以填的LISTSIZE=7
(3)CLASSES为识别种类,也就是标注的时候填的类别名称
(4)masks和anchors根据yolo-fastest.cfg文件来填写
(5)配置目标NPU和ID,rknn.init_runtime(target=‘rv1126’,device_id=‘6de927292515e514’)
(6)图像处理outputs在处理时要注意输出的维度,有时候reshape会报异常是因为你前面的GRID0~2配置不对。
具体修改后的代码如下

from PIL import Image
import numpy as np
from matplotlib import pyplot as pltimport re
import math
import random
import cv2from rknn.api import RKNNGRID0 = 10
GRID1 = 20
GRID2 = 52
LISTSIZE = 7
SPAN = 3
NUM_CLS = 2
MAX_BOXES = 500
OBJ_THRESH = 0.5
NMS_THRESH = 0.6'''
CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light","fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant","bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa","pottedplant","bed","diningtable","toilet ","tvmonitor","laptop	","mouse	","remote ","keyboard ","cell phone","microwave ","oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")CLASSES = ("aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant",
"sheep","sofa","train","tvmonitor")
'''
CLASSES = ("zyj","muzhuang")def sigmoid(x):return 1 / (1 + np.exp(-x))def process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = sigmoid(input[..., 4])box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = sigmoid(input[..., 5:])box_xy = sigmoid(input[..., :2])box_wh = np.exp(input[..., 2:4])box_wh = box_wh * anchorscol = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy /= (grid_w, grid_h)box_wh /= (416, 416)box_xy -= (box_wh / 2.)box = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with object threshold.# Argumentsboxes: ndarray, boxes of objects.box_confidences: ndarray, confidences of objects.box_class_probs: ndarray, class_probs of objects.# Returnsboxes: ndarray, filtered boxes.classes: ndarray, classes for boxes.scores: ndarray, scores for boxes."""box_scores = box_confidences * box_class_probsbox_classes = np.argmax(box_scores, axis=-1)box_class_scores = np.max(box_scores, axis=-1)pos = np.where(box_class_scores >= OBJ_THRESH)boxes = boxes[pos]classes = box_classes[pos]scores = box_class_scores[pos]return boxes, classes, scoresdef nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Argumentsboxes: ndarray, boxes of objects.scores: ndarray, scores of objects.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]y = boxes[:, 1]w = boxes[:, 2]h = boxes[:, 3]areas = w * horder = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= NMS_THRESH)[0]order = order[inds + 1]keep = np.array(keep)return keepdef yolov4_post_process(input_data):# yolov3# masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]# anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],#          [59, 119], [116, 90], [156, 198], [373, 326]]# yolov3-tiny# masks = [[3, 4, 5], [0, 1, 2]]# anchors = [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319]]#yolov4#masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]#anchors = [[12, 16], [19, 36], [40, 28], [36, 75], [76, 55], [72, 146], [142, 110], [192, 243], [459, 401]]#yolov4-tiny#masks = [[1, 2, 3], [3, 4, 5]]#anchors = [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169], [344, 319]]#yolo-fastestmasks = [[0, 1, 2], [3, 4, 5]]anchors = [[26, 48], [67, 84], [72, 175], [189, 126], [137, 236], [265, 259]]boxes, classes, scores = [], [], []for input,mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)boxes = np.concatenate(boxes)classes = np.concatenate(classes)scores = np.concatenate(scores)nboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])if not nclasses and not nscores:return None, None, Noneboxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)return boxes, classes, scoresdef draw(image, boxes, scores, classes):"""Draw the boxes on the image.# Argument:image: original image.boxes: ndarray, boxes of objects.classes: ndarray, classes of objects.scores: ndarray, scores of objects.all_classes: all classes name."""for box, score, cl in zip(boxes, scores, classes):x, y, w, h = boxprint('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(x, y, x+w, y+h))x *= image.shape[1]y *= image.shape[0]w *= image.shape[1]h *= image.shape[0]top = max(0, np.floor(x + 0.5).astype(int))left = max(0, np.floor(y + 0.5).astype(int))right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))# print('class: {}, score: {}'.format(CLASSES[cl], score))# print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)if __name__ == '__main__':# Create RKNN objectrknn = RKNN()# Load tensorflow modelprint('--> Loading model')ret = rknn.load_rknn('./yolo-fastest.rknn')if ret != 0:print('load rknn model failed')exit(ret)print('done')# Set inputsim_file = 'ai_0006.jpg'img = cv2.imread(im_file)orig_img = cv2.resize(img, (320,320))img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)# init runtime environmentprint('--> Init runtime environment')ret = rknn.init_runtime(target='rv1126',device_id='6de927292515e514')if ret != 0:print('Init runtime environment failed')exit(ret)print('done')# Inferenceprint('--> Running model')outputs = rknn.inference(inputs=[img])rknn.release()#input0_data = np.reshape(outputs[2], (SPAN, LISTSIZE, GRID0, GRID0))input1_data = np.reshape(outputs[1], (SPAN, LISTSIZE, GRID1, GRID1))input2_data = np.reshape(outputs[0], (SPAN, LISTSIZE, GRID0, GRID0))input_data = []#input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))boxes, classes, scores = yolov4_post_process(input_data)if boxes is not None:draw(orig_img, boxes, scores, classes)cv2.imshow("results",orig_img)cv2.waitKeyEx(0)print('done')exit(0)

2、运行代码及结果如下:

yolo-fast-zyj$ pyhton3 run_yolo-fastest_rknn.py

在这里插入图片描述
三、总结
倒腾了好几次,最后终于搞好了。最主要还是要到官方去找下资料,细心点就OK了。

这篇关于将yolo-fastest自训练模型转成rknn,并在rv1126下实现推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365557

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand