baichuan2 chat模型sft指令微调数据格式分析

2023-11-07 05:20

本文主要是介绍baichuan2 chat模型sft指令微调数据格式分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

百川官网:https://www.baichuan-ai.com/
模型权重:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
记录一下 baichuan 2 的 tokenizer 及 chat 数据构建格式。

二、数据处理代码

根据官方 github 的 finetune 代码,将其 preprocessing 方法抽离单独测试。为方便记录,代码中的注释暂时假设每个汉字为一个token,且 input_ids 的注释和实际 id 不保证对应。

from transformers import AutoModelForCausalLM, AutoTokenizer
import torchpath = "Baichuan2-13B-Chat"
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)user_tokens = [195]
assistant_tokens=[196]
ignore_index = -100
model_max_length = 10def preprocessing(example):input_ids = []labels = []for message in example["conversations"]:from_ = message["from"]value = message["value"]value_ids = tokenizer.encode(value)if from_ == "human":input_ids += user_tokens + value_ids    labels += [tokenizer.eos_token_id] + [ignore_index] * len(value_ids)# input_ids = <reserved_106>    你   是   谁# labels    =       </s>      -100 -100  -100else:input_ids += assistant_tokens + value_idslabels += [ignore_index] + value_ids# input_ids = <reserved_106>    你   是   谁    <reserved_107>  我  是  木  尧# labels    =       </s>      -100 -100  -100        -100       我  是  木  尧input_ids.append(tokenizer.eos_token_id)labels.append(tokenizer.eos_token_id)# input_ids = <reserved_106>    你   是   谁    <reserved_107>   我  是  木  尧    </s># labels    =       </s>      -100 -100  -100        -100       我  是  木  尧   </s># 切片 截断前 model_max_length 个 tokeninput_ids = input_ids[:model_max_length]labels = labels[:model_max_length]input_ids += [tokenizer.pad_token_id] * (model_max_length - len(input_ids))labels += [ignore_index] * (model_max_length - len(labels))# input_ids = <reserved_106>    你   是   谁    <reserved_107>   我  是  木  尧    </s>  <unk>  <unk>  <unk> ...  <unk># labels    =       </s>      -100 -100  -100        -100       我  是  木  尧    </s>   -100   -100   -100  ... -100input_ids = torch.LongTensor(input_ids)labels = torch.LongTensor(labels)attention_mask = input_ids.ne(tokenizer.pad_token_id) # ne 即 not equal 不等于,不等于unk则为true即mask掉,等于则为false# input_ids         = <reserved_106>    你   是   谁    <reserved_107>   我  是   木  尧    </s>  <unk>  <unk>  <unk> ...  <unk># labels            =       </s>      -100  -100  -100       -100        我  是   木  尧    </s>   -100   -100   -100  ... -100# attention_mask    =       True        True True True       True     True True True True True  True    True   True  ...  Truereturn {"input_ids": input_ids,"labels": labels,"attention_mask": attention_mask,}

example 数据格式及运行测试:

preprocessing({"system": "","conversations": [{"from": "human","value": "你是谁"},{"from": "yayi","value": "我是木尧"}]
})# Output:
# {'input_ids': tensor([  195, 92067,   196,  6461, 93334, 95562,     2,     0,     0,     0]),
# 'labels': tensor([    2,  -100,  -100,  6461, 93334, 95562,     2,  -100,  -100,  -100]),
# 'attention_mask': tensor([ True,  True,  True,  True,  True,  True,  True, False, False, False])}

案例分析:

  • 百川2用预留的 token 表示 human 和 assistant 的内容,上面例子会转化成:<reserved_106>你是谁<reserved_107>我是木尧</s><unk><unk> ... <unk>
    • <reserved_106> (id=195)表示 human 输入。
    • <reserved_107> (id=196)表示 assistant 输出。
  • 首先,遍历 conversations 中的每一轮 human 和 assistant:
    • input_ids:前面拼上各自的标识符(<reserved_106><reserved_107> )之后拼接各自内容对应的 token ids。
    • labels:对于 human 的内容,其标识符对应位置是 </s> (的id),其他位置是 -100,不计算这些 loss 和梯度;对于 assistant 的内容,其标识符对应位置是 -100,其他位置和 input_ids 一致。(为啥开始不是-100而是</s>呢?issue里找到了答案,详见总结部分)
      在这里插入图片描述
  • 然后,分别在 input_ids 和 labels 追加结束符 </s>,并根据 model_max_length 填充 pad token 即 <unk>,或超长截断,并转成 tensor;
  • 最后,构造 attention_mask,非 pad token 的部分全是 true,pad token 部分全是 false,忽略后面这些填充位置的 attention 计算。

三、总结

在这里插入图片描述

上图是简单做了页PPT,以多轮数据为例。把 user_token_id 对应位置的 label 设置为结束符 </s>,推理时拼接多轮时就不用拼接结束符了。因为 human 的第一个token(位于’user_token_id’位置)实际上是与 assistant 部分中最后一个token(‘assistant_token_id’)对应的’next_token_label’。

附上 baichuan2 词表的前 2000 个token(从101: <reserved_12> 到 1088: <reserved_999> 都是预留的 token):

0 <unk>
1 <s>
2 </s>
3 <SEP>
4 <CLS>
5 \n
6 \t
7 <img>
8 <img/>
9 </img>
10 <h2>
11 <h2/>
12 </h2>
13 <td>
14 <td/>
15 </td>
16 <strong>
17 <strong/>
18 </strong>
19 <table>
20 <table/>
21 </table>
22 <tr>
23 <tr/>
24 </tr>
25 <li>
26 <li/>
27 </li>
28 <b>
29 <b/>
30 </b>
31 <h3>
32 <h3/>
33 </h3>
34 <br>
35 <br/>
36 </br>
37 <h4>
38 <h4/>
39 </h4>
40 <h5>
41 <h5/>
42 </h5>
43 <p>
44 <p/>
45 </p>
46 <h1>
47 <h1/>
48 </h1>
49 <tbody>
50 <tbody/>
51 </tbody>
5253545556575859606162 +
63 -
64 =
6566676869707172 .
73 !
74 ?
75 ...
76 。。。
77 。。。。。。
78798081828384 ```
85 <!--
86 -->
87 ---
88 <!DOCTYPE>
8990919293949596979899100101 <reserved_12>
102 <reserved_13>
103 <reserved_14>
104 <reserved_15>
......
1085 <reserved_996>
1086 <reserved_997>
1087 <reserved_998>
1088 <reserved_999>
1089 <0x00>
1090 <0x01>
1091 <0x02>
1092 <0x03>
......
1341 <0xFC>
1342 <0xFD>
1343 <0xFE>
1344 <0xFF>
1345 ▁t
1346 ▁a
1347 in
......
1996 ▁know
1997 ▁sec
1998 研究
1999 ▁these

这篇关于baichuan2 chat模型sft指令微调数据格式分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361511

相关文章

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类