R语言回归和主成分PCA 回归交叉验证分析预测城市犯罪率

2023-11-06 14:50

本文主要是介绍R语言回归和主成分PCA 回归交叉验证分析预测城市犯罪率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于回归和主成分PCA的研究报告,包括一些图形和统计输出。

在本文中,我解释了基本回归,并介绍了主成分分析 (PCA) 使用回归来预测城市中观察到的犯罪率。我还应用 PCA 创建了一个回归模型,用于使用前几个主成分对相同的犯罪数据进行建模。最后,我对两种模型的结果进行了比较,看看哪个表现更好。

 主成分分析PCA降维方法和R语言分析葡萄酒可视化实例

主成分分析PCA降维方法和R语言分析葡萄酒可视化实例

,时长04:30

回归有助于显示因素和因变量之间的关系,它基本上回答了两种类型的问题;1. 吸烟对癌症的影响 2. 未来会发生什么?(例如)三年后的油价。

数据

犯罪学家对惩罚制度对犯罪率的影响感兴趣。已使用汇总数据对此进行了研究。数据集包含以下列:

变量描述
M:  14-24岁的男性在总人口中的百分比
So:  南方州的指标变量
Ed:  25岁或以上人口的平均受教育年限
Po1: 年警察保护的人均支出
Po2: 去年警察保护的人均支出
LF: 14-24岁年龄组的城市男性平民的劳动力参与率
M.F: 每100名女性的男性人数
Pop: 国家人口,以十万计
NW: 非白人在人口中的百分比
U1: 14-24岁城市男性的失业率
U2: 城市男性35-39岁的失业率
财富财富:可转让资产或家庭收入的中值
收入不平等:收入低于中位数一半的家庭的百分比
入狱概率:入狱人数与犯罪人数的比率
时间: 罪犯在首次获释前在国家监狱中服刑的平均时间(月)。
犯罪: 犯罪率:每10万人口中的犯罪数量

我们将数据集导入R环境

read("crim.txt")

检查变量是否正确

head(crim) #所有的变量都是预测因素,只有犯罪是因变量。

我们正在尝试使用整个数据集来构建回归模型来进行预测。创建简单的回归模型


summary(model)

使用数据框架来手动创建我们的数据点测试,然后在测试数据上运行一些预测。


primodl <- predict(mdl, test)primodl 

输出值不到下一个最低城市的犯罪率的一半,所以我将创建第二个模型,观察它的输出并画出比较。

创建第二个模型


sumry(son_mel)

我们现在可以对第二个模型进行预测了

pic_secn_mel<- prict(sed_odel, tst)pic_secn_mel

与第一个模型相比,其结果明显更高。所以,它更合理。

交叉验证

我们可以做一个5折的交叉验证。

cv(se,m=5)

我们可以得到数据和其平均值之间的平方差的总和

 sum((Cm- mean(ui))^2)

我们可以得到模型1、模型2和交叉验证的平方残差之和

SSrl <- sum(res^2)

SSre <- sum(resi^2)

res <- "ms")*nrow

我们也可以计算出3个模型的R平方值

 1 -res/tot

1-res/SS

 1-res/SS

获得的R平方值表明我们的拟合质量很好。对于惩罚性回归,有必要对数据进行标准化,以确保所有的特征都受到同等的惩罚。但在线性回归的情况下,这其实并不重要。它将只是转移截距和系数,但相关关系保持不变。

PCA

PCA是一种用于描述变化的方法,显示数据集中的强相关性,从而使其易于探索和可视化数据。PCA通过以下方式对数据进行转换:(1)去除数据中的相关关系(2)按重要性对坐标进行排序。

我们可以检查crime数据的预测变量之间的相关性。

pairs(srm,c("o",Ed"o"))


对数据集中的所有预测变量应用PCA。请注意,为了获得更准确的PCA结果,需要对这些变量进行标准化。


sumr(pca)
rotan #PCA旋转是特征向量的矩阵
pca

然后,我们可以通过绘制每个主成分的方差来决定在 "前几个 "主成分中使用多少个主成分。

plotpcaye ="ie")

要确定使用多少PC?我们可以尝试使用5个主成分作为开始。

pcax[,1:5]

使用前五个PC,我们可以继续建立一个线性回归模型。

summary(mdPCA)

为了根据原始变量重建模型,首先我们从PCA线性回归模型中获得系数,之后通过使用主成分的特征向量将PCA成分系数转化为原始变量的系数。

PCA线性回归的系数

coefficients[1]
coefficients[2:6]beta0 #截距

转换

rot %*% betat(alpha) # 标准化的数据系数

获得未标准化数据的系数。

 ahusl <- ahs / sppy(u[,1:15],sd)ba0cl <- ea0 - sum/sapply(sd))

未标准化数据的系数

 t(alas_sled)be0uced

#我们可以得到我们的未标准化数据的估计值as.marx %*% unscle + beta0aled

最后,为了比较使用PCA的模型和使用回归的模型的质量,我们必须计算R-squared和调整后的R-squared,并将这些数值与前一个模型的数值进行比较。调整后的R平方考虑了模型中预测因子的数量。

Rsquared <- 1 - SSE/SST # R-squared

使用所有变量的无PCA的先前线性回归模型

summary(dlLR)

R-squared 和调整后的 R-squared 值都较高,这表明至少对于使用前五个主成分的模型,具有 PCA 的线性回归模型优于没有 PCA 的线性回归模型。为了检查使用不同数量的前 n 个主成分的线性回归模型是否产生了更好的拟合模型,我们可以使用循环并进一步进行交叉验证。


这篇关于R语言回归和主成分PCA 回归交叉验证分析预测城市犯罪率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357259

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端