金豺算法优化VMD参数,六种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵、包络谱峰值因子...

本文主要是介绍金豺算法优化VMD参数,六种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵、包络谱峰值因子...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

声明:对于作者的原创代码,禁止转售倒卖,违者必究!


本期采用金豺优化算法(Golden Jackal optimization, GJO)优化VMD参数。选取六种适应度函数进行优化,以此确定VMD的最佳k和α参数。6种适应度函数分别是:最小包络熵,最小样本熵,最小信息熵,最小排列熵,排列熵/互信息熵包络谱峰值因子,代码中可以一键切换。

关于优化VMD参数的更多详细内容还可以参考这一篇:运行速度终于变快了!优化VMD参数,五种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵

金豺优化算法于2022年发表在中科院1区top SCI期刊《Expert Systems with Applications》上,属于高被引论文,深受欢迎。谷歌学术被引次数为167次。

a6f7facea56d8e7f1824a9cc3be349a2.png

c2d490040123c146e0266f5dd628415e.png

对于前面五种适应度函数,之前的文章介绍过很多了。本文新增一个包络谱峰值因子作为适应度函数,关于包络谱峰值因子的介绍如下:

b01a2e040314d152fe47af9b49d2049e.png

参考文献:张龙,熊国良,黄文艺.复小波共振解调频带优化方法和新指标[J].机械工程学报,2015,51(03):129-138.

至于应该选择哪种作为自己的适应度函数,大家可以看这篇文章。VMD为什么需要进行参数优化,最小包络熵/样本熵/排列熵/信息熵,适应度函数到底该选哪个

同样以西储大学数据集为例,选用105.mat中的X105_BA_time.mat数据中1000个数据点。没有数据的看这篇文章。西储大学轴承诊断数据处理,matlab免费代码获取

1.最小包络熵作为适应度函数

7bbb8ca24462748f5b791fc179b93c18.png

a9b145e66e53180894bae8153d256639.png

2.最小样本熵作为适应度函数

3b08aa53b18d54aefb9fb6291b6d08a0.png

162d5b379a351d5a349b3d751f15424e.png

3.最小信息熵作为适应度函数

2c9e5cc1fa033e43490f700f05b8b0dc.png

d0bce7434f726ce0b411fcc3d42c35c9.png

4.最小排列熵作为适应度函数

3f342be672b66c27bb3f688eef796de7.png

e2a7e2a14e94bbed811feb5a56a57ffb.png

5.复合指标作为适应度函数

有关复合指标的介绍如下:

b049cc819c85d7560ca33e650c116f32.jpeg

结果图:

2b24378345fc5522e0b47fa6b4d50fda.png

d3ef7a1fdcb7bc0e5a9fa66849d46de5.png

6.包络谱峰值因子作为适应度函数

0c083c3926a70a07c382003439420242.png

ca6a3e0d9f9f1ecb5410afa53e7ff2e7.png

本文的部分代码

%% 以最小包络熵、最小样本熵、最小信息熵、最小排列熵,排列熵/互信息熵,包络谱峰值因子,为目标函数(任选其一),采用金豺算法优化VMD,求取VMD最佳的两个参数
clear
clc
close all
%选取数据
load 105.mat
data = X105_DE_time(6001:7000); %这里选取105的DEtime数据,注意这里替换为自己的数据即可,数据形式为n行*1列,列数必须为1。
%% 选取适应度函数类型
xz = 1;  
% 选择1,以最小包络熵为适应度函数,
% 选择2,以最小样本熵为适应度函数,
% 选择3,以最小信息熵为适应度函数,
% 选择4,以最小排列熵为适应度函数,
% 选择5,以复合指标:排列熵/互信息熵为适应度函数。
% 选择6,以包络谱峰值因子为适应度函数。
if xz == 1  fobj=@(x)EnvelopeEntropyCost(x,data);          %最小包络熵
elseif xz == 2fobj=@(x)SampleEntropyCost(x,data);            %最小样本熵
elseif xz == 3  fobj=@(x)infoEntropyCost(x,data);              %最小信息熵
elseif xz == 4fobj=@(x)PermutationEntropyCost(x,data);       %最小排列熵
elseif xz == 5fobj=@(x)compositeEntropyCost(x,data);       %复合指标:排列熵/互信息熵
elsefobj=@(x)Envelopepeakfactor(x,data);       %复合指标:排列熵/互信息熵
end%% 设置参数
lb = [100 3];    %惩罚因子和K的下限
ub = [2500 10];  %惩罚因子和K的上限
dim = 2;            % 优化变量数目
Max_iter=20;       % 最大迭代数目
SearchAgents_no=30;       %种群规模
%% 调用GJO函数
[GTO_bestfit, GJO_bestX, GJO_Convergence_curve] = GJO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
%% 画适应度函数曲线图,并输出最佳参数
if xz == 6GJO_Convergence_curve = -GJO_Convergence_curve;GTO_bestfit = -GTO_bestfit;
end
figure
plot(GJO_Convergence_curve,'Color',[0.9 0.5 0.1],'Marker','>','LineStyle','--','linewidth',1);title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
legend('GJO优化VMD')
display(['The best solution obtained by GJO is : ', num2str(fix(GJO_bestX))]);  %输出最佳位置
display(['The best optimal value of the objective funciton found by GJO is : ', num2str(GTO_bestfit)]);  %输出最佳适应度值

大家注意看到xz这个变量,当选择1,以最小包络熵为适应度函数,选择2,以最小样本熵为适应度函数,选择3,以最小信息熵为适应度函数,选择4,以最小排列熵为适应度函数,选择5,以复合指标:排列熵/互信息熵为适应度函数。,选择6,以包络谱峰值因子为适应度函数。这样大家切换起来就很方便了。

代码获取方式:支付后会显示网盘链接!

ea1c2ac46fcf6369b7d9f71a302aea19.jpeg

这篇关于金豺算法优化VMD参数,六种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵、包络谱峰值因子...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355953

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN