金豺算法优化VMD参数,六种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵、包络谱峰值因子...

本文主要是介绍金豺算法优化VMD参数,六种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵、包络谱峰值因子...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

声明:对于作者的原创代码,禁止转售倒卖,违者必究!


本期采用金豺优化算法(Golden Jackal optimization, GJO)优化VMD参数。选取六种适应度函数进行优化,以此确定VMD的最佳k和α参数。6种适应度函数分别是:最小包络熵,最小样本熵,最小信息熵,最小排列熵,排列熵/互信息熵包络谱峰值因子,代码中可以一键切换。

关于优化VMD参数的更多详细内容还可以参考这一篇:运行速度终于变快了!优化VMD参数,五种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵

金豺优化算法于2022年发表在中科院1区top SCI期刊《Expert Systems with Applications》上,属于高被引论文,深受欢迎。谷歌学术被引次数为167次。

a6f7facea56d8e7f1824a9cc3be349a2.png

c2d490040123c146e0266f5dd628415e.png

对于前面五种适应度函数,之前的文章介绍过很多了。本文新增一个包络谱峰值因子作为适应度函数,关于包络谱峰值因子的介绍如下:

b01a2e040314d152fe47af9b49d2049e.png

参考文献:张龙,熊国良,黄文艺.复小波共振解调频带优化方法和新指标[J].机械工程学报,2015,51(03):129-138.

至于应该选择哪种作为自己的适应度函数,大家可以看这篇文章。VMD为什么需要进行参数优化,最小包络熵/样本熵/排列熵/信息熵,适应度函数到底该选哪个

同样以西储大学数据集为例,选用105.mat中的X105_BA_time.mat数据中1000个数据点。没有数据的看这篇文章。西储大学轴承诊断数据处理,matlab免费代码获取

1.最小包络熵作为适应度函数

7bbb8ca24462748f5b791fc179b93c18.png

a9b145e66e53180894bae8153d256639.png

2.最小样本熵作为适应度函数

3b08aa53b18d54aefb9fb6291b6d08a0.png

162d5b379a351d5a349b3d751f15424e.png

3.最小信息熵作为适应度函数

2c9e5cc1fa033e43490f700f05b8b0dc.png

d0bce7434f726ce0b411fcc3d42c35c9.png

4.最小排列熵作为适应度函数

3f342be672b66c27bb3f688eef796de7.png

e2a7e2a14e94bbed811feb5a56a57ffb.png

5.复合指标作为适应度函数

有关复合指标的介绍如下:

b049cc819c85d7560ca33e650c116f32.jpeg

结果图:

2b24378345fc5522e0b47fa6b4d50fda.png

d3ef7a1fdcb7bc0e5a9fa66849d46de5.png

6.包络谱峰值因子作为适应度函数

0c083c3926a70a07c382003439420242.png

ca6a3e0d9f9f1ecb5410afa53e7ff2e7.png

本文的部分代码

%% 以最小包络熵、最小样本熵、最小信息熵、最小排列熵,排列熵/互信息熵,包络谱峰值因子,为目标函数(任选其一),采用金豺算法优化VMD,求取VMD最佳的两个参数
clear
clc
close all
%选取数据
load 105.mat
data = X105_DE_time(6001:7000); %这里选取105的DEtime数据,注意这里替换为自己的数据即可,数据形式为n行*1列,列数必须为1。
%% 选取适应度函数类型
xz = 1;  
% 选择1,以最小包络熵为适应度函数,
% 选择2,以最小样本熵为适应度函数,
% 选择3,以最小信息熵为适应度函数,
% 选择4,以最小排列熵为适应度函数,
% 选择5,以复合指标:排列熵/互信息熵为适应度函数。
% 选择6,以包络谱峰值因子为适应度函数。
if xz == 1  fobj=@(x)EnvelopeEntropyCost(x,data);          %最小包络熵
elseif xz == 2fobj=@(x)SampleEntropyCost(x,data);            %最小样本熵
elseif xz == 3  fobj=@(x)infoEntropyCost(x,data);              %最小信息熵
elseif xz == 4fobj=@(x)PermutationEntropyCost(x,data);       %最小排列熵
elseif xz == 5fobj=@(x)compositeEntropyCost(x,data);       %复合指标:排列熵/互信息熵
elsefobj=@(x)Envelopepeakfactor(x,data);       %复合指标:排列熵/互信息熵
end%% 设置参数
lb = [100 3];    %惩罚因子和K的下限
ub = [2500 10];  %惩罚因子和K的上限
dim = 2;            % 优化变量数目
Max_iter=20;       % 最大迭代数目
SearchAgents_no=30;       %种群规模
%% 调用GJO函数
[GTO_bestfit, GJO_bestX, GJO_Convergence_curve] = GJO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
%% 画适应度函数曲线图,并输出最佳参数
if xz == 6GJO_Convergence_curve = -GJO_Convergence_curve;GTO_bestfit = -GTO_bestfit;
end
figure
plot(GJO_Convergence_curve,'Color',[0.9 0.5 0.1],'Marker','>','LineStyle','--','linewidth',1);title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
legend('GJO优化VMD')
display(['The best solution obtained by GJO is : ', num2str(fix(GJO_bestX))]);  %输出最佳位置
display(['The best optimal value of the objective funciton found by GJO is : ', num2str(GTO_bestfit)]);  %输出最佳适应度值

大家注意看到xz这个变量,当选择1,以最小包络熵为适应度函数,选择2,以最小样本熵为适应度函数,选择3,以最小信息熵为适应度函数,选择4,以最小排列熵为适应度函数,选择5,以复合指标:排列熵/互信息熵为适应度函数。,选择6,以包络谱峰值因子为适应度函数。这样大家切换起来就很方便了。

代码获取方式:支付后会显示网盘链接!

ea1c2ac46fcf6369b7d9f71a302aea19.jpeg

这篇关于金豺算法优化VMD参数,六种适应度函数任意切换,最小包络熵、样本熵、信息熵、排列熵、排列熵/互信息熵、包络谱峰值因子...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355953

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各